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The focus of this research is the application of the Artificial Immune System (AIS) 

paradigm to a new research area along with the modifications necessary to adapt it to a new 

problem. In the past 10 years, there has been much research into the use of various Machine 

Learning (ML) algorithms in Network Flow Traffic Classification. AIS algorithms have thus far 

not been applied to this problem. Because AIS algorithms have been used extensively for Network 

Intrusion Detection applications, which is a similar area of research, the motivation to extend them 

to the network flow classification problem is clear. 

This research also shows a technique for faster execution of the training and classification 

portions of an AIS algorithm, which are meant to speed-up the execution of the AIS algorithms 

and adapt them to resource-constrained environments. Additionally, the research performed for 

this study seeks to expand the knowledge available about the behavior of Artificial Immune System 

algorithms. Specifically, the effect of several different distance functions as well as different kernel 

functions on the accuracy of the AIS classifier. The optimization is also applied to the class of 

algorithms known as Negative Selection Algorithms (NSA). 

This study includes a survey of the network traffic classification literature. It also contains 

a presentation of the history of Artificial Immune System algorithms, their inner 



 

 

workings, and their previous applications. Furthermore, the reasoning for applying this type of 

algorithm to the network traffic classification problem is explained. Finally, the performance of 

the algorithm described in this study is analyzed by giving its big O complexity as well as a bound 

for its generalization error. 
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CHAPTER I  

 

INTRODUCTION 

 

The purpose of this work is to fulfill the requirements of the Computer Science PhD 

program at Western Michigan University. The subject matter of this research falls under the 

domain of biologically inspired computing. 

The following subsections will provide a high-level introduction to the problem that will 

be explored in the dissertation. The motivation and importance of the work will also be discussed. 

Previous work in the field will be presented, as well as the work that will be included in the 

dissertation.  

 

Scope 

 

The research pursued for this dissertation will be the application of Artificial Immune 

System algorithms to networking problems. AIS algorithms are a biologically inspired class of 

algorithms which have been found to be appropriate for classification and optimization problems, 

particularly in binary classification problems. Because of their use in Network Intrusion Detection 

systems in previous research, it is now sought to expand the uses of AIS algorithms to include 

Network Flow Classification. To accomplish this, it is necessary to expand the range of possible 

classifications that can be done with AIS algorithms, to include multi-class classification. 

Furthermore, it is also sought to adapt the algorithm to resource-constrained environments. 

To do this, two optimization techniques will be developed and tested with the algorithm. There is 

also a lack of basic research into some basic modifications to the algorithm that could increase the 

accuracy of its predictions. For example, different distance functions could be increase the 
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prediction accuracy of the algorithm. Hence, some basic techniques will be implemented within 

the AIS classifier in order to find out if they are useful.  

The research also involves the transfer of some of the knowledge gained from the 

optimizations developed for the AIS classifier to other applications and datasets. The algorithm is 

optimized by reducing the number of times the distance function is calculated as well as by 

reducing the number of comparisons done by the algorithm. This optimization was originally 

developed by us for our own AIS-inspired algorithm and it is adapted to the class of AIS algorithms 

known as Negative Selection algorithms. 

The scope of the dissertation will be introduced in chapters 2 and 3 of this work. Chapter 

2 will introduce the problems being examined and chapter 3 will give background information for 

Artificial Immune System algorithms. 

 

Rationale 

 

The field of Artificial Immune System algorithms is now 20 years old and has seen 

considerable research effort [1]. However, it has not been used in many practical applications. The 

purpose of this research is to develop an algorithm inspired by AIS principles, and make it into a 

workable solution for real-world problems.  

One of the main applications of the algorithm is classification for embedded systems. 

Embedded systems are small computers, limited in size and the amount of power usage allowed. 

Algorithms designed for these computers must consider these special requirements. The Internet 

of Things is a very big part of the motivation for this research, since it relies on small, inexpensive 

computers that are limited in memory and processing power [2]. 
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More information about the rationale behind the proposed research is shown in the third 

section of chapter 3, which gives a thorough review of previous applications AIS algorithms to 

networking problems. Chapter 4 is a literature review of all research related to the current research. 

 

Review of the State of the Art 

 

Network flow classification is the problem of classifying data flowing across a network 

into different categories. Some of the ways in which a network flow can be categorized are: by 

application, by the amount of data it holds, and whether a human or machine generated it. Network 

flow classification has become more and more important recently, and much research has been 

published in the application of Machine Learning techniques to it. Some ways to accomplish flow 

classification are: using port numbers, deep packet inspection, host behavior based approach, and 

using the statistical properties of the data passing over the network.  

There have been many Machine Learning algorithms applied to the problem of network 

flow classification. Among them: SVM, Naïve Bayes, C4.5 trees, RIPPER, Multi-layer 

perceptrons, Bayes Net, and Radial Basis Function Neural Networks. However, none of these have 

been customized for execution on resource-constrained and embedded systems, as is the algorithm 

under study in this research. At the time of this research, there has not been any effort to apply 

Artificial Immune System algorithms to the problem of network flow classification. 

A complete review of the state of the art of machine learning algorithms applied to network 

flow classification is given in the fourth section of chapter 3. Furthermore, Figure 7 gives a visual 

representation of the place of the current research in the field. 
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Significance of the Proposed Research 

 

The research direction proposed in this dissertation is important because, although there 

has been much research in the field of Artificial Immune systems, there have not been many real-

world applications for the algorithms developed. The research proposed here not only applies an 

AIS-inspired classification algorithm to a real and pertinent problem in networking, it will develop 

an optimization technique that allows the algorithm to compete with other, more well-known 

classification algorithms. Specifically, the AIS algorithm proposed here is very applicable to the 

new and flourishing field of algorithms for embedded systems, which are very important in the 

technology known as the Internet of Things (IoT). 

The proposed research is inspired by previous work in the field of Artificial Immune 

Systems algorithms. However, because of challenges in the training and classification time 

required by this type of algorithms, as well as other considerations, the research breaks with some 

of the traditional techniques typically associated with AIS algorithms. Specifically, the training 

does not proceed randomly, as with other AIS algorithms, which makes the proposed algorithm 

much faster. Furthermore, there are no other AIS algorithms using the optimizations studied in this 

research. The use of kernel functions is also investigated, as well as different distance measures, 

both of which have been researched in the context of AIS algorithms before, but not on a real-

world data set, as done here.  

This research is important because it shows that it is possible to use AIS-like algorithms 

on real-world problems. Also, the algorithm developed and tested is able to approach the 

complexity of SVM and Naive Bayes algorithms, something that is not easily done with AIS 

algorithms. At the same time, the AIS-like algorithm proposed here is able to improve in several 
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ways on the SVM and Naïve Bayes algorithms, as it is able to improve on the accuracy of these 

when used with small training sets. The AIS-like algorithm also uses parameters that are easy to 

set up and understand. Lastly, through tests, it has been shown that the AIS algorithm does not 

require the use of kernel functions to achieve high accuracy, something that that the SVM 

algorithm cannot claim. Because of the lack of kernel functions as well as the simplicity of the 

algorithm itself, the algorithm does not require setting many parameters to function well, 

something that is very important in embedded systems. 

A more detailed description of the similarities and differences between the current research 

and previous published research is given in chapter 5, which also describes the original 

contribution that the current research brings to the field. 

 

Delimitations 

 

The research pursued for this dissertation will be the application of Artificial Immune 

System algorithms to networking problems only and does not seek to apply to other classification 

problems or data sets. Furthermore, it is also sought to adapt the algorithm to resource-constrained 

environments through the design of two optimizations, no other modifications to the basic 

algorithm are considered. This research also seeks to tests the effects of different distance functions 

and kernel functions on the performance of the classifier, no other variations on the basic algorithm 

will be investigated. The research also involves the transfer of some of the knowledge gained from 

the optimizations developed for the AIS classifier to other applications and datasets, this is limited 

to the Negative Selection algorithm only. 
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Limitations 

 

Although every measure has been taken to make sure that the results in this dissertation are 

applicable in as many situations as possible there are some limitations. For example, only a few 

data sets are used to tests the algorithms. There could be some data sets for which the algorithms 

will give very different results. It is sought to describe these limitations whenever they may be 

found. 

 

Assumptions 

 

In the same way as the previous section, the assumptions of this dissertation are centered 

on the data sets used. For example, the flow classification data set used for some of the 

experiments. It is assumed that this data set is a fair and balanced sample of internet traffic and 

does not emphasize certain types of traffic over others. The nature of the internet has not changed 

considerably in the last 10 years, even as its size has increased exponentially. It is believed that 

assumptions are safe to make and the research is still relevant. 
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CHAPTER II  

 

PROBLEM STATEMENT 

 

The research making up this dissertation falls under the umbrella of Machine Learning as 

well as Network Traffic Classification. This chapter introduces these concepts. 

 

Statistical Classification Problem 

 

This section introduces the idea of a classifier, defines the notion of a classifier 

mathematically, and shows how to measure the performance of a classifier.  

Within the field of statistics, a model is used to describe a real-world process; within the 

field of Machine Learning, statistical models are used to make predictions about the world. When 

statistical models are used to make predictions about the class membership of an entity they are 

called “classifiers.” Creating a classifier is called “training,” and using it to make predictions is 

called “predicting” or “classifying.” There are many ways in which to train a classifier, all of which 

fall into one of these categories: supervised learning, unsupervised learning, reinforcement 

learning, and evolutionary learning. This dissertation will deal exclusively with supervised 

learning. 

Supervised learning is done when there is data available that is correctly labeled, or when 

the desired output of the algorithm is packaged with the data in the data set. The goal is to model 

the underlying distribution that generated the samples. Unsupervised learning is done when there 

is no data available with the correct label or desired output. Instead, interesting patterns are gleaned 

from the data without human intervention. Reinforcement learning is used when the environment 

is dynamic and changing. It is useful when there is no label or category that can be learned, instead 

using the concept of a “reward” that needs to be maximized. 
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Machine learning algorithms can be divided into two categories: online learning algorithms 

and offline learning algorithms. Offline algorithms derive a model from the data available and do 

not change it after the initial training phase ends. Online algorithms learn one instance at a time, 

and do not use an entire data set to derive a model. Online learning algorithms often have correct 

class labels available to them after a pause, instead of being bundled with the data, as in offline 

machine learning. For example, online learning can be used to make predictions of stock market 

prices, updating its model as data becomes available. 

Another distinction between learning algorithms is between eager learning algorithms, and 

lazy learning algorithms. Eager algorithms build a model from training data in an explicit step, and 

do not change the model without repeating the training step. Lazy algorithms, on the other hand, 

do not build a model until a prediction is requested from the algorithm. Instance-based learning is 

a type of lazy learning, in which a query is compared directly to the training data to make a 

prediction.  

Classifiers are machine learning algorithms that assign a category or class label to a 

previously unseen observation. The assignment can happen either through supervised learning or 

unsupervised learning. When done with supervised learning, the correct category of training data 

is known, and when done with unsupervised learning, the correct category of training data is not 

known but is inferred from similarities between training observations.  

This dissertation will deal with both binary classification and multi-class classification. 

Binary classification problems only classify instances into two classes. Multiple class 

classification problems involve more than two classes and are more complicated than binary 
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classification problems. Moreover, a multiple class classifier can be built using many binary 

classifiers. 

Algorithms that perform classification work with data sets which are made up of vectors 

of data. A vector is a collection of ordered data. A labeled data set includes a class label with each 

vector, an unlabeled data set does not. Each element in a vector is called a “feature” in machine 

learning. Features can be binary (when it can only take on two values), categorical (when it can 

only take on a fixed number of possible values), ordinal (when the values can be compared in an 

ordinal scale, i.e. they can be ranked), integer-valued, or real-valued. These types of features can 

be combined to describe complicated entities in the world, such as speech, text, or pictures. The 

vector space is also called the feature space, which can be thought of as the space in which all 

possible feature vectors can exist. [3] 

There are four main areas in which a classifier can be evaluated: 

1. Accuracy: the dependability of the classifier, defined as the proportion of successful 

classifications out of all attempted classifications. Some similar measurements are: 

recall, precision, and f-measure.  

2. Speed: the amount of time needed for the classifier to evaluate the data given to it and 

make a prediction. 

3. Comprehensibility: describes a quality that allows a human to understand the inner 

workings of the classifier. Some classifiers can easily explain their decisions to humans, 

others cannot. 

4. Training time: the amount of time that the classifier takes to build a model or develop a 

rule that will be used to make predictions. [4] 
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In this research, the amount of time a classifier takes to make a prediction will also be 

investigated. 

 

Formal Definition 

 

As stated above, this research deals primarily with supervised learning. The result of 

supervised learning is a model, which can then be used to make classifications. Classification can 

be seen as a mathematical function, which takes a data point as an input and outputs the category 

or class identifier. Such a function can be very simple or complicated, and may or may not be 

representable in human-understandable terms. An implementation of the function is called a 

classifier. The simplest type of classifier is a binary classifier, therefore a binary classifier is 

described formally in this section. 

Although there are more types of variables (e.g. categorical variables) that can be used by 

a classifier, the feature space is described as continuous here, for the sake of simplicity: 

 X = ℝ𝑑  (1) 

where the number of dimensions is d. Furthermore, a vector belonging to X is denoted:  

 x = [x1, x2, x3, …, xd] ∈ ℝ (2) 

The job of a classifier is to map every vector x in vector space X to a class yi, where: 

 yi ∈ Y (3) 

since binary classification is being described: 

 Y = {1, -1} (4) 

The mathematical definition of the supervised learning classification problem follows. 

Given a set of learning data S, consisting of pairs of inputs and outputs: 

 S = {(x1, y1), (x2, y2), (x3, y3), …, (x|S|, yi)} (5) 
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where each x ∈ X and each y ∈ Y. The goal of a learning algorithm is to build a function h that 

approximates a function y, where y is the true function that classifies an input vector x to a category 

y, being described like this: 

 h(x): X → Y (6) 

mapping a member of set X to set Y.  

To test a classifying function h created by the training process, a set of test data is used, 

which is of the same structure are S:  

 T = {(x1, y1), (x2, y2), (x3, y3), … , (x|T|, yi)} (7) 

The quality of the predictions of a binary classifier can be measured in this way: 

 ∑
I( h( x𝑖 ) = y𝑖 )

|T|
 

|𝑇|
𝑖=1  (8) 

where I is the indicator function, which is equal to 1 when the statement is true and 0 when it is 

false. The goal of a training algorithm is to produce an accurate model, so that, when used to make 

predictions it will maximize the above function. 

 

Introduction to Multi-Class Classification 

 

Multi-class classification is a natural extension of the binary classification problem. 

Simply, the definition above can be extended by making the set Y equal to: 

 Y = {y1, y2, … , y|Y|} (9) 

There are two ways in which multi-class classification can be accomplished. A classifier 

built specifically for multi-class classification can be designed, or the problem can be decomposed 

so that it can be handled by a set of binary classifiers. 
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There are several common classifiers that can handle multi-class datasets. Artificial Neural 

Networks are classifiers inspired by the nervous systems of mammals and other animals. They 

consist of collections of interconnected neurons. Individual neurons are capable of making simple 

choices. With enough interconnected neurons, more complicated decisions can be made. 

Information storage is accomplished by changing the value of “weights,” which affect how a single 

neuron is connected to its neighbors. Training is accomplished by changing the weights of the 

connections between neurons. Neural networks are one of the most common approaches to 

classification. 

When dealing with real-valued data, the k-nearest neighbors algorithm is a very simple and 

useful classifier, since it does not require a training process. To do a classification, the vector to 

be classified is compared against all vectors in the dataset, and a distance function is calculated. 

The k “nearest” neighbors class label is selected to be predicted class label of the vector to be 

classified, where k is an integer. If k is equal to more than 1, then a vote is taken and the majority 

class is assigned to the example. This classifier is very easy to implement, but it does not scale 

well to larger data sets. 

The Naïve-Bayes classifier is based on Baye’s rule, which shows the relationship between 

the probabilities of two events. By using this rule, the probability of an example belonging to a 

certain class is calculated and the class with the highest probability is the returned as the class to 

which the example belongs to. The Naïve Bayes classifier is called naïve because it assumes that 

each feature is independent from every other feature in the dataset, something which may not 

always be true. This assumption, however, is usually true enough and very useful, since it cuts 
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down on a large amount of processing. The Naïve Bayes classifier is widely implemented and 

used. 

Since their introduction, Support Vector Machine (SVM) classifiers have been the gold 

standard in binary classification, and can be used in multi-class classification with the use of 

specialized problem decomposition techniques. SVMs work by simply drawing a hyper plane 

within the vector space that separates the data points of the classes present in the data. The hyper 

plane is drawn so that the distance between the classes is maximized. Samples to be classified are 

compared to the hyper plane drawn by the classifier. If the classes in a data set cannot be separated 

by a hyper-plane the data set is said to be non-linearly separable. When the dataset is not linearly 

separable, a kernel trick can be used. This involves the use of a kernel function which maps all of 

the data points into a higher dimensional space, in which the data points can be linearly separated. 

There are several ways to solve a multi-class classification problem with binary classifiers. 

The one-versus-all (OVA) approach uses K binary classifiers, where K is equal to the number of 

classes present in the dataset. One classifier is trained on each class, artificially dividing the data 

set into two subsets, where one set of examples is the class that the binary classifier currently being 

trained will recognize, and the other set is made up of all other examples in the data set. This 

creates a binary classification problem from the multi-class problem. This approach creates an 

ensemble classifier, since instead of having one output, now the outputs of K classifiers have to be 

dealt with. To deal with the problem, the class of the classifier with the highest confidence in its 

prediction is considered to be the correct class of the sample.  

The all-versus-all (AVA) decomposition is more complicated than the one-versus-all 

decomposition, and it requires more classifiers to be implemented. This type of decomposition 
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compares all classes against all other classes, meaning that K(K-1)/2 classifiers have to be trained. 

For each pair of classes, a dataset is created using only examples from the two classes being 

compared, and a classifier is trained on this data. To classify a pattern, all classifiers are run on it 

and a vote is taken, the class with the highest number of votes is considered the class the pattern 

belongs to. [5] 

The techniques mentioned here are general approaches to multi-class classification. There 

are many more that can be mentioned, and this section is only meant as an introduction. 

 

Statistical Network Flow Classification Problem 

 

The classification of network traffic has become important in recent years, since it is useful 

for network operators to have information about the information that flows over their networks. 

Some uses for this information are: for the prioritization of the packets of applications that might 

require Quality of Service (QoS), or disabling the network access of users that are committing 

illegal acts. A few current issues in this field are: network neutrality, the sharing of copyrighted 

material over networks, and the conflict between malicious users and network administrators [6]. 

There are a few ways to partition network traffic into different groups. This dissertation deals with 

the problem of categorizing network traffic by the type of application that generates the data. 

 

Network traffic classification techniques have been used for many years, with growing 

complexity required, as techniques for hiding information about the identity of data have been 

developed as well. The simplest approach is to use the port number associated with the TCP 

connection to identify the application. This is a very fast approach that uses well-known port 

numbers. This approach has several weaknesses. Furthermore, certain applications are able to 
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negotiate a dynamic port number to exchange data, thus avoiding the use of standard port numbers. 

The efficacy of this technique for traffic classification has gone down recently [7]. 

Deep packet inspection is a technique for classifying network traffic that involves 

examining the contents of packets. To accomplish this, the contents of packets are compared 

against stored patterns of known applications. This technique produces accurate results, but is 

computationally expensive. Moreover, the legality of examining the data of users is questionable. 

This technique is also easily sidestepped by the use of encryption, which makes it impossible to 

view the data directly.  

Another way in which the application that is generating the data might be identified is by 

identifying the patterns of interactions between a user and an application server. Applications 

interact with servers in known ways, and this can be used to identify them. This is called the host 

behavior based approach. 

The approach to network flow classification studied in this dissertation is based on the 

statistical properties of the data passing on the network. The information is gathered without 

looking at the contents of packets, and is therefore avoid legal dilemmas. Some of the information 

used is: port numbers, inter-packet delay, packet counts, as well as calculated features such as the 

averages and medians of these values. The information used can also come from packet headers, 

but never from packet payloads. Although it is not the only way to do it, the statistical classification 

approach to packet flow classification uses techniques from data mining and Machine Learning 

(ML) to build models of the data. 
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CHAPTER III  

 

BACKGROUND 

 

This section presents some of the background of the domain dealt with in this research, 

including an introduction to biologically inspired algorithms, natural immune systems, artificial 

immune systems, and network flow classification. 

 

Biologically Inspired Computing 

 

Over the last seven decades, computer scientists have been taking inspiration from 

biological systems to develop techniques to solve problems with computers. This approach is 

based on the idea that biological systems have been solving complicated problems long before 

computers were invented, and therefore have important insights into very hard problems. The 

problems solved by biological systems are usually very complex and studying them has given 

computer scientists original and useful ideas.  

An important idea within biologically inspired computing is emergence. Emergence is used 

to describe the way in which complex behaviors arise within systems of simple agents that act 

according to simple rules. Almost all biological systems display emergent behaviors, either in the 

macro or micro levels. Thus, biologically inspired algorithms sometimes use emergent properties 

to solve problems. Emergent behaviors can also be found within the disciplines of economics, 

physics, chemistry, and even psychology. For example, emergence is used to study the food 

foraging activities of bee colonies. This research has inspired bee colony algorithms, which are 

useful in solving optimization problems. 

Another way in which biologically inspired computing can be understood is through the 

idea of connectionism. Connectionism is used to understand systems of interconnected systems of 
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simple units. As with emergence, biological systems that are sufficiently complex also display the 

property of connectionism. An area of research in which connectionism is important is artificial 

neural networks. 

Another way to understand biologically inspired computing is through swarm intelligence. 

Examples of swarm intelligence in nature can be found in the herding behavior of certain animals, 

the growth of bacteria colonies, the activities of ant colonies, the foraging behavior of bees, and 

many other examples. Swarm intelligence is not a well-defined field of study, but does include 

elements of connectionism and emergence. Swarm intelligence methods are characterized by 

populations of simple agents that interact with each other and their environment. The population 

solves a problem by acting locally, without global knowledge. The field of ant colony optimization 

algorithms is directly inspired by the swarming behavior of ants, and has proven to be a valuable 

technique for any problem that involves finding paths through graphs. 

Biologically inspired computing is related to Artificial Intelligence (AI) and can be 

considered a sub-field of it. The approach used by biologically-inspired algorithms is very different 

from most other AI algorithms. Many AI algorithms take a top-down approach to solving 

problems, where the programmer sets up the algorithms and all of its parameters. Alternatively, 

biologically inspired algorithms do not require the programmer to set up the initial conditions 

perfectly, or add all necessary knowledge to the algorithm at the start of execution. The execution 

of biologically inspired algorithms is often non-deterministic, since they frequently have 

randomness built-in. Another feature of biologically inspired algorithms is their simplicity, since 

the components themselves are simple, and the mathematics required to describe them are also 
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simple. Lastly, another feature of biologically inspired algorithms is their amenability to execution 

on SIMD and MIMD processors. 

 

Ant-Hill Algorithms 

 

Ant hill algorithms are a type of a biologically-inspired algorithms that are well suited to 

finding the best path between two nodes in a graph or network. They are derived from the behavior 

of ants who are able to reliably find the shortest path between their colony and a source of food, 

and to communicate this information to other ants.  

The basic elements of the algorithm are: ants, which are agents that travel along graph 

edges according to a set of rules, and pheromones, which are left behind by the ants to 

communicate with other ants. Like many other biologically inspired algorithms, ant hill algorithms 

run until a certain number of iterations are executed, or when an ending condition is met. Ants 

choose a move between vertices in the graph according to two parameters: the attractiveness of the 

move (computed by some desired heuristic), and the pheromone trail left behind by other ants that 

made the same move in the past. Good solutions leave a stronger pheromone trail and weaker 

solutions leave behind a weaker pheromone trail. At the end of the algorithm the best solution, 

according to a pre-defined heuristic, is selected. The basic steps of the algorithm are shown in 

Figure 1. 

Ant hill algorithms have been applied to many problems that can be represented as graphs. 

For example: the traveling salesman problem, protein folding, scheduling problems, and the set  

cover problem. Another feature of ant hill algorithms is their ability to adapt to changing network 

conditions in real time, which allow the algorithms to run continuously. 
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Figure 1. Pseudo Code for the Ant Hill Algorithm 

 

Genetic Algorithms 

 

Genetic algorithms (GA) are a class of biologically-inspired algorithms which are used to 

solve search and optimization problems. Genetic algorithms are inspired by the process of natural 

selection and use the concepts of mutation, inheritance, selection, and crossover. 

Like other biologically inspired algorithms, GAs use a population of proposed solutions, 

where each solution is like the genes of an organism in an environment. Like ant hill algorithms, 

GAs are iterative algorithms that run for a set number of “generations,” or until a stopping 

condition is met. By applying the process of natural selection to the population of proposed 

solutions, a GA is able to create a set of solutions that is more and more fitted to its environment 

with each passing generation. The “fitness” of a proposed solution is defined by a fitness function, 

which assigns a fitness score to each proposed solution.  

A genetic algorithm may use one of several genetic operators to improve the fitness score 

of the population of candidate solutions: mutation, crossover, and selection. Each of these 

operations is best understood in its biological sense, since they are direct copies from the biological 

domain. Mutation happens in an organism when its genes are randomly changed. Likewise, a GA 

Initiate the population of ants  

WHILE !terminated 

 FOREACH ants in population: 

  Make a list of possible moves 

Move to a random vertex in the proposed list of moves, according to attractiveness 

and pheromones 

  IF ant has finished a solution 

   Leave behind a pheromone trail along that path 

  ENDIF 

 END FOREACH 

END WHILE 

RETURN best solution found 
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will randomly change one or more of the “genes” of a proposed solution. Crossover happens when 

two organisms combine their genes to produce offspring. In GAs, two solutions may combine their 

genes to produce a solution that shares their genes. Selection is implemented on the whole 

population at the end of each iteration. To do this, the portion of the population of solutions with 

the highest fitness scores will be selected to create the next generation of solutions, replacing the 

solutions with lower fitness scores. A simple pseudo code implementation of a genetic algorithm 

is shown in Figure 2. 

As with other biologically inspired algorithms, it is not always easy to analyze the 

execution of a GA to find how it arrived at a solution. GAs have been used to solve scheduling 

and engineering problems. Generally speaking, they are most useful when the solution domain is 

very complex and contains many local optima. 

Figure 2. Pseudo Code for the Genetic Algorithm 

 

Particle Swarm Optimization 

 

Particle swarm optimization (PSO) is a biologically inspired algorithm that is drawn from 

the behavior of swarms of insects as well as flocks of birds. PSO is used for optimization problems 

and it excels when the solution space is large and multidimensional. As with other algorithms 

discussed in this section, PSO works with a population of “particles,” and it solves problems 

iteratively. Each particle represents a candidate solution, and the solution is encoded in the 

Initialize population 

WHILE !terminated 

 Apply fitness function to all members of population 

 Select a given portion of the population with the highest fitness function 

 Select pairs to mate, add to population using offspring from mated pairs 

 Apply mutation operator to a given portion of the population 

END WHILE 

RETURN solution with highest fitness score 
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coordinates of the particle in the solution space. Each particle also has an associated velocity. The 

velocity encodes the particle’s direction and speed through the solutions space. The PSO algorithm 

also requires a function that measures the quality of a candidate solution, which is similar to a 

GA’s fitness function. 

During each iteration, the PSO algorithm will move its population of particles around the 

solution space according to mathematical formulas using each particle's position and velocity. 

Each particle's position and velocity at the end of each iteration is based not only on its original 

position and velocity, but also on the position and velocity of every other particle in the swarm. 

Over time, the swarm of particles will move towards better quality solutions. A pseudo code 

implementation of a simple PSO algorithm is shown in Figure 3. 

PSO algorithms are particularly flexible in the types of problems that they can work with. 

PSO does not require that the function that calculates the quality of a solution be differentiable. 

PSO can also deal with problems that change over time. PSO cannot guarantee that the solution 

that is returned is the global optimum solution, however. 

 

Figure 3. Pseudo Code for the Particle Swarm Optimization Algorithm 

Initialize the population of particles with random positions and velocities 

WHILE !terminated 

 FOR EACH member of the population of particles 

Randomly move each particle's position w/ a bias towards the best position 

  Apply the new velocity to update positions 

  IF fitness of this particle is better than the best known global position 

   Update the best known global position 

  ENDIF 

 END FOR EACH 

END WHILE 

RETURN solution with highest fitness 
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Artificial Immune System Algorithms 

 

Artificial immune system algorithms are biologically inspired algorithms that are useful in 

classification and optimization problems. They are described in the following sections. 

 

Natural Immune Systems 

 

In the past 20 years, the mammalian immune system and other natural immune systems 

have inspired the development of computer algorithms that mimic their approach to accomplish 

classification and optimization in complex environments. These algorithms leverage the 

mammalian immune system’s (MIS) memory and learning capabilities. 

The immune system is made up of organs and cells, some of which move around the 

organism in the bloodstream. Some of the organs that make up the immune system are: the thymus, 

lymph nodes, and bone marrow. However, only some of these are useful when adapting the 

mammalian immune system paradigm to the field of computer science. The mammalian immune 

system has two main components: the innate immune system and the adaptive immune system. 

The difference between them is that the innate immune system is not  able to adapt to the 

environment, the adaptive immune system does. Both sides of the MIS work together to protect 

the host from infections.  

The innate immune system takes many forms, and is present in many part of the body. 

Some of the organs that implement this system are: the skin, gastrointestinal tract, respiratory 

airways, and eyes. Within the respiratory system, nasal hair, mucus, coughing and sneezing form 

obstacles against infections. In the digestive system, mucous membranes, stomach acids, and 

saliva also form physical barriers. Lastly, the pH level of the body as well as the temperature of 

the body also help to keep invaders at bay. These organs are the first line of defense against 
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pathogens, and provide a physical and chemical barrier against infection. However, the innate 

immune system is not useful to computer scientists, since it does not perform classification and 

does not adapt to the environment. The innate immune system is not only found in mammals, but 

also in plants, fungi, and bacteria. 

Another type of cells used by the immune system are T-cells. They are involved in the 

regulation of other cell’s actions as well as attacking pathogens that are attacking the host. There 

are few different types of T-cells, including T-helper cells, cytotoxic T-cells and suppressor T-cells. 

Some other organs active within the immune system are lymph nodes, which act as convergence 

sites of the lymphatic vessels, where each node stores immune cells, including B and T cells. Some 

specialized lymph nodes are: tonsils, adenoids, appendix, Peyer’s patches. The spleen is also active 

in the destruction of organisms that have invaded the blood stream. 

The adaptive immune system makes up the second part of the MIS, and is responsible for 

maintaining a memory of the pathogens that have previously attacked, as well as classifying 

previously-unseen pathogens. The adaptive immune system is able to distinguish between self and 

non-self cells in the body. The adaptive immune system is made up of several organs and several 

types of cells. Bone marrow produces many types of specialized cells, such as T-cells and B-cells. 

The thymus, located behind the sternum in humans, processes immature cells before they are 

activated, to prevent auto-immune diseases.  

The basic action of recognition is accomplished through proteins found on the surfaces of 

all cells. The MIS produces molecules known as antibodies that lock onto these proteins, signaling 

that a pathogen is present to the rest of the immune system, which then takes action against the 

foreign cell. Within the bloodstream, cells that produce antibodies are called B-cells. The thymus 
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protects the host by removing immature NIS cells that produce antibodies that incorrectly 

recognize self tissues as an infection, before they can cause damage to the host. This process is 

known as negative selection. 

The adaptive immune system is also remarkable because it leverages a small number of 

genes in the genotype of the host to produce a large number of different types of antibodies. This 

is notable because the space of possible proteins and possible antibodies is very large. This 

capability allows the body to search for and find the correct antibody to classify a previously-

unseen infection, with very little energy investment. 

The mammalian immune system can be viewed as a classification system functioning 

inside of bodies of mammals. The MIS performs binary classification, since it distinguishes 

between self (the organism’s own cells and tissues), and non-self (foreign bacteria, viruses, etc.). 

It is able to protect the host against a large number of bacteria and viruses. It is able to do this 

mostly without prior knowledge of the pathogens that will attack, and is also able to learn new 

classification rules when new pathogens are encountered. It is also able to adapt to changes in the 

environment. Furthermore, the mammalian immune system is able to distinguish between useful 

bacteria that operate in the body and malignant bacteria, highlighting its discriminative power. 

Lastly, natural immune systems are self-organizing, lightweight, and energy efficient. 

 

Algorithm Overview 

 

The field of artificial immune system algorithms is based on the simulation of the elements 

of the natural immune systems found in animals, within computers. AIS algorithms use 

populations of elements to solve problems, much in the same way that genetic algorithms use 
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populations of candidate solutions. The goal of AIS algorithms is to take advantage of the adaptive 

capabilities of natural immune systems as well as their ability to memorize complex patterns. [1] 

 

Feature Space 

 

When working with data within the discipline of machine learning, it is often useful to see 

every vector as located within a “feature space,” also known as “shape space.” Each element in 

the vector corresponds to a feature in the data set. Often the values of the elements of the vector 

can be normalized to the range [0,1], which simplifies the implementation of the algorithms using 

the data. Each vector present in the data set is then located as a point in the feature space.  

 

Negative Selection 

 

The Negative Selection (NS) algorithm is inspired by the actions of the natural immune 

system. The first paper to describe the use of the Negative Selection algorithm in computer science 

is [8]. Negative selection is based on the action of the thymus, which selects the cells in the immune 

which detect self and removes them. By doing this, the thymus implements a simple strategy for 

detecting non-self tissues, and preventing auto immune diseases. 

The negative selection algorithms trains a population of antibodies very simply, by using a 

set of samples for the patterns that need to be recognized. An individual antibody is not required 

to be of any specific type or structure, as long as it is able to implement a recognition rule, and can 

be a hyper sphere, a string matching rule, or a more complicated algorithm. An antibody is 

implemented as a simple classifier. The negative selection algorithm generates random antibodies, 

and tests them against all samples of “self” in the training set. If an antibody accepts a sample of 

the self class, then that antibody is rejected from the population of antibodies. Otherwise the 
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antibody is accepted into the population [8]. A pseudo code listing of the negative selection 

algorithm is found in Figure 4. 

There have been many different implementations of antibodies tested in the literature. All 

of the implementations tested have one thing in common: they are all collections of requirements 

or filters that must be satisfied for the antibody to be “activated.” All types of antibodies either 

recognize or do not recognize a sample. The “size” of the antibody is equal to the number of 

requirements. The most common implementations of antibodies are simple range antibodies, r-

contiguous bit antibodies, and hyper-sphere antibodies. 

Figure 4. Negative Selection Pseudo Code 

 

input:   

Sself, set of seen self elements 

output:     

 population, the set of antibodies 

functions:  

 matches(): a function that returns true if an antibody recognizes an element 

 generate_random_antibody(): a function to generate a random antibody 

 

BEGIN 

 population = {} 

 WHILE !stopping_criteria 

  new_antibody = generate_random_antibody() 

  match = FALSE 

  FOREACH { s | s ∈ Sself } 

   IF matches(s, new_antibody) 

    match = TRUE 

   ENDIF 

  IF !match 

   population = population ∪ new_antibody 

  ENDIF 

 ENDWHLE 

END 
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Simple range antibodies make comparisons between the antibody to the data. For every 

feature of the example, the antibody defines a range within which the antibody will accept the data. 

If an antibody accepts all of the features of an example, then the example is recognized by the 

antibody. 

R-chunk and r-contiguous antibodies work with strings of symbols. The antibodies are 

themselves strings of symbols. With r-contiguous antibodies, the detectors are always of the same 

length as the strings to be matched, and the antibody matches a string if there is a substring of size 

r present in the example string that matches the antibody’s string in the same positions. 

Just like r-contiguous antibodies, r-chunk detectors are made up of a string of the same 

alphabet as the strings to be matched, and an integer r. An r-chunk detector will match a string if 

at any position in the given string substring of length r matches where all characters are identical 

to the detector’s string. The only difference between r-contiguous and r-chunk detectors is that r-

chunk detectors are not required to be the same length as the sample strings. [8] 

Another detector type is hyper-sphere antibodies, which are defined by a center position in 

the feature space, and a radius. Some common distance measures are: Euclidian distance, 

Minkowski distance, and Chebyshev distance. There are also distance metrics that can be used 

with strings. For example: Hamming distance, binary distance, edit distance, and value difference 

metric. A complete description of these and other ways to calculate affinity can be found in [9]. 

Hyper-sphere antibodies match a data point when the data point lies within the radius of the 

antibody, as defined by the center point and radius of the antibody. 
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Positive Selection 

 

Positive selection is found in the Natural Immune System and has been borrowed by AIS 

algorithms, although not as extensively as negative selection. Positive selection is modeled on a 

receptor filter found on the surfaces of immature T-cells. The receptor is a molecule called MHC 

and it allows the organism to filter out T-cells that have not matured yet. Positive selection works 

similarly to the Negative Selection algorithm, but instead of not adding antibodies to the population 

if they match self, they are added. 

 

Clonal Selection 

 

The clonal selection principle deals with the ways in which antibody-producing cells act to 

maximize the likelihood of finding an antibody to match a new type of pathogen, and the ways in 

which they remember previously encountered pathogens.  

When a B-cell is exposed to a pathogen a second time, it undergoes the process of clonal 

selection, where it makes copies of itself in order to be able to deal with the threat. Clonal selection 

allows the immune system to respond a lot faster to pathogens that have been detected before, as 

well. The second time that a pathogen is detected, B-cells differentiate into plasma cells and long-

lived B-cells, both of which are able to produce antibodies that match the pathogen that triggered 

the primary response. 

Clonal selection in AIS is a way to ensure that B-cells that produce antibodies that are 

successful in identifying instances of non-self are able to get more antibodies in the antibody pool. 

This is a simple mechanism that allows the immune system to optimize itself to environment, and 

to marshal its resources effectively. However, the natural immune system does not clone B cells 

perfectly. Genetic mutations are inserted in the copied B-cells. This is implemented by having the 
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cloning process introduce small errors, in this way the cloned B-cells are able to recognize 

instances of non-self that are very close, to what the original B-cells recognized. The addition of 

the errors in cloning allows the population of B-cells to adapt itself to new threats [10]. Pseudo 

code for the Clonal Selection algorithm can be seen in Figure 5. 

 

Classification 

 

Although there are many complicated schemes to perform classification, the classification 

step of an AIS algorithm is very simple. The negative selection training creates a population of 

simple classifiers that are used to classify a test sample. If a singly antibody recognizes the test 

sample, then it is classified as “non-self” [8]. Pseudo code for the classification portion of the 

Negative Selection Algorithm can be seen in Figure 6. 

 

Danger Theory 

 

Danger theory is an aspect of natural immune systems that has inspired a type of artificial 

immune algorithm. It has been proposed by Matzinger [11] that negative selection is not the only 

mechanism that is at work when the immune system is classifying tissue as self on non-self. There 

are many ways in which non-self tissue is allowed to work in the body, for example: foreign 

bacteria in the gut. At the same time, there are examples of self tissues being attacked by the 

immune system as is the case with some tumors. 

Because of these observations, Matzinger suggested Danger Theory as an alternative way 

in which the body recognizes pathogens. These extra distinctions are added: ‘non-self but 

harmless’ and of ‘self but harmful’, which makes four categories in total. The mechanism that 

danger theory uses to detect these new categories is the detection of damage being done to the 
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Figure 5. Clonal Selection Pseudo Code 

input: population_size: the size of the desired population 

 selection_size: the size of the population to be kept at the end of each iteration 

 random_size: the number of antibodies to generate at the end of an iteration 

 clone_rate: the number of clones that are made from each selected antibody 

 mutation_rate: the number of mutations applied to each antibody 

output: 

 population, the population of antibodies generated 

functions: 

 generate_random_antibody(), a function to generate a random antibody 

 affinity(), a function to calculate the affinity of an antibody 

 select(), a function to select the antibodies with the highest affinity 

 clone(), a function to copy an antibody 

 hypermutate(), a function to perform hyper mutation on an antibody 

 replace(), a function to replace the lowest-affinity member of the population 

BEGIN 

population = {} 

size = 0 

WHILE size < population_size 

 Population = population ∪ generate_random_antibody() 

ENDWHILE 

WHILE !stopping_criteria 

 FOREACH { p | p ∈ population } 

      p[affinity] = affinity(p) 

ENDFOREACH 

population_selected = select(population, selection_size)  

clones = {} 

FOREACH { p | p ∈ population_selected} 

   clone = clone(p, clone_rate) 

 clones = clones ∪ clone 

ENDFOREACH 

 FOREACH { p | p ∈ clones } 

   hypermutate(p, mutation_rate) 

      p[affinity] = affinity(p) 

ENDFOREACH 

population = select(population, clones, population_size) 

 size = 0 

 random_population = {} 

 WHILE size < random_size 

random_population = random_population ∪   generate_random_antibody() 

 ENDWHILE 

 replace(population, random_population) 

ENDWHILE 

END 
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Figure 6. Negative Selection Classification Pseudo Code 

 

tissue of the organism. Very simply, if the organism’s tissue is being damaged, then there is non-

self tissue present or self tissue that is harmful. 

Danger signals are sent out from tissue that is being damaged, usually because of cell death. 

A cell can die of natural causes, if this happens no danger signals are sent out. However, if a cell 

dies of unnatural causes chemical signals are sent to the immune system that bring T-cells to the 

affected area. The danger signal, in an AIS algorithm that uses it is grounded in data about system 

activities. Whereas non-self data in a Negative Selection algorithm is simply a set of feature vectors 

with no further information, the danger signal is an extra source of information when doing 

classification [12]. 

 

Dendritic Cell Algorithms 

 

Dendritic cell algorithms are an area of AIS that is related to Danger Theory. Dendritic 

cells act as an interface between the innate and adaptive parts of the natural immune system. 

input:  

 Santibodies, set of antibodies created by training algorithm 

 example, example to be classified 

output: 

 class of the example 

functions: 

 matches(): a function that returns true if an antibody recognizes an example 

 

FOREACH { a | a ∈ Santibodies } 

 IF matches(a, example} 

  return “non-self” 

 ENDIF 

ENFOREACH 

RETURN “self” 
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Dendritic cells take in antigen material from the organism and make it available to other types of 

cells in the immune system. Dendritic cells also react to danger signals. 

The dendritic cell algorithm works with a population of cells that recognize patterns in 

data. The cells may be in three states: mature, semi-mature, and immature. The population of cells 

is trained by exposing the immature cells to data, and transitioning immature cells to semi-mature, 

and then to mature status. Mature cells recognize patterns in data that are deemed “dangerous.”  

 

Applications of AIS 

 

The natural immune system is a powerful decentralized classifier with some remarkable 

properties.  For example, the immune system is able to learn the signatures of previously unseen 

pathogens keeping their signatures in memory for later use. It is also highly decentralized, having 

no central point of failure. Lastly, it eludes specialization, managing to learn a wide variety of 

pathogens. It is also capable of perceiving and combating dysfunction from the host’s cells as well 

as foreign pathogens. 

Because of its abilities, the natural immune system has been adapted to many different 

applications. Some examples are: fault detection, computer security, change detection, and 

network intrusion detection [13]. Artificial immune systems have also been used in robotics 

applications, multi-modal function optimization, and intelligent control systems [14]. 

In [15], the authors show how to implement an adaptive critic system for autonomous 

aircraft. An adaptive critic is an AI system which controls the actions of intelligent agents. It is 

used to predict the performance of the agent in the future and plan a correct path through the 

environment. In a similar application, the authors of [16] use an immune-inspired algorithm to 

implement a management system for a semiconductor production line. 
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Some other areas in which Artificial Immune Systems have been applied are: computer 

security [17], anomaly detection [18], fault diagnosis [19], data mining [20], adaptive control [22], 

robotics [23], and optimization [24]. These applications highlight the many places in which AIS 

and similar biologically inspired algorithms have been used. 

 

AIS and Network Intrusion Detection 

 

Network intrusion Detection (NID) systems is a type of software used to distinguish 

unusual and illegal behavior in networks. Because of the nature of the natural systems that inspired 

them, artificial immune system algorithms have been used to build network intrusion detection 

systems. NID systems have been developed for ad-hoc networks, wireless networks, for detecting 

botnets, and detecting binaries compromised by viruses. This area of research has been a major 

source of inspiration for the current research and an introduction is provided in this section. 

NID systems can be classified into two ways: the way in which the NID system analyses 

the network traffic, and the placement of the agents that monitor network traffic. There are two 

ways to analyze network traffic: misuse detection and anomaly detection. Misuse detection 

examines network traffic for well-known attacks, comparing patterns found in the network to 

previously-seen and labeled patterns. Anomaly detection involves building a model of what normal 

network behavior looks like, and comparing current network traffic to the model, identifying 

attacks by their differences to normal behavior. 

Misuse detection approaches usually have low false-positive rates, but also suffer from 

high false-negative rates. The models behind their classifications are updated after a novel attack 

is identified, and are therefore unable to identify new types of attacks or attacks that have been 

intentionally obfuscated. Anomaly detection NID systems are usually able to identify novel 
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attacks, since they do not fit their model of normal network behavior. However, anomaly-based 

NID systems suffer from a large false-positive error rates, but have a low false-negative error rates. 

They are also unable to deal with changing network traffic patterns since any behavior that deviates 

from the norm is seen as an attack on the network. 

The placement of the sensors and agents that make up an NID system also characterizes it. 

Host-based NID systems monitor network traffic from the hosts that make up the network, while 

also monitoring log files and process behaviors on the host. Network-based NID systems run on 

the network hardware making up the infrastructure of the network. Host-based NID systems are 

able to detect a wider range of attacks than network-based systems, but are difficult to install and 

maintain and are unable to detect attacks involving more than one host on the network. Network-

based NID systems are able to survey a large number of hosts at the same time, have low 

installation and maintenance costs, and are usually less complicated. However, they cannot detect 

encrypted attacks.  

There has been much research in the application of artificial immune systems to building 

network intrusion detection systems. In most of the research AIS algorithms are used to detect 

anomalies in network traffic and host behavior, specifically because of their ability to map a class 

boundary using only samples from one class. This is very useful in anomaly-based NID systems, 

since they have easy access to normal network and system behavior metric, but not to samples of 

abnormal behavior. Additionally, almost all research presented in this section is of host-based NID 

systems. [25] 

One of the first papers published on the application of AIS algorithms to NID systems is 

[26]. In it, a system for detecting abnormal network connections is built using negative selection. 



35 

 

The information used by the algorithm to classify network connections is limited to: the source IP 

address, destination IP address, and the port number of the connection. When classifying a network 

connection, the AIS paradigm is followed, meaning that “self” is considered to be safe and “non-

self” is considered to be unsafe.  

Within the algorithm used in [26] the information used to make a classification is encoded 

into a string, and r-contiguous string matching is used to perform negative selection. If the 

detectors survive the negative selection phase, they are used to detect network connections. If a 

detector is found to be useful in detecting a “non-self” network connection, then its “fitness” score 

is raised. If a detector has a high enough fitness score then it is promoted to a memory detector 

and is never deleted. Detectors that have made it through negative detection are subject to deletion 

if their fitness is not high enough. When an antibody matches a “non-self” (and therefore abnormal) 

connection in the network, a system administrator is emailed with the details. If the administrator 

confirms that the connection was abnormal and dangerous, the antibody then becomes a “mature” 

antibody. If two antibodies match the same connection, the one with the higher match gets its 

fitness increased. 

Experiments were run with the algorithm described in [26] with network data gathered 

from 50 hosts, limiting the antibody population to 100 antibodies per host. The match length for 

the r-contiguous string matching was 12, and the experiments ran for 50 days observing 2.3 million 

connections. There were a total of 78 false-positives per day without human help, and 74 false-

positives per day with human help. The AIS algorithm compared well with other NID algorithms 

of the day. This research does not use any statistical information to attacks to the network, and 

relies on simple network connection data. 
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In a series of papers, Kim and Bentley explore the use of negative selection and clonal 

selection on an AIS classifier, using both network data and several data sets from the UCI 

repository. When used with network data, their algorithm proved to be infeasible with real-world 

data, taking too long to train. It was estimated that for an 80% detection rate it would take 1,429 

years to train a population of antibodies that is big enough. Additionally, to classify just 20 minutes 

worth of data, 6×108 detectors would be needed. Although this research was done more than a 

decade ago, and technology has improved, it would be safe to say that this approach would still be 

untenable today. [27-30] 

Using both negative and positive selection Dasgupta and Gonzalez [31] built and tested an 

AIS algorithm to detect network intrusions. They use three features of network data: bytes per 

second, packets per second, ICMP packets per second. This approach is slightly different from 

[26], since they use calculated statistical features of the network data, and not information from 

the network data itself. To test their algorithm they use a small subset of the 1999 Lincoln Labs 

data set, made available for researches to investigate intrusion detection systems. In their results, 

they concentrate on only five attacks, detecting all five of them. The highest detection rates they 

found were, 95% accuracy for positive selection and 85% accuracy for negative selection. 

Gonzalez and Dasgupta followed their previous publication with [32], which focused on 

using AIS, but relying on the use of positive samples only. They use hyper-spheres as detectors, 

being able to do so because all variables were real-valued. After a certain time, detectors die of old 

age and eventually a good set of detectors is found. They got detection rate of 95% with a very 

small false alarm rate. 
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Pioneering research by Kephart in [33] applied an AIS algorithm to the automatic detection 

of computer viruses and worms. Their algorithm monitors system binaries for changes, as well as 

monitoring the behavior of important daemons for changes. In related research [34], Forrest, 

Hofmeyr, Somayaji, and Longstaff develop an AIS algorithm is used to detect virus infections by 

detecting patterns in system call data. Several common sendmail attacks were detected, as well as 

some attempted attacks. 

In [35], Kotov and Vasilyev propose an algorithm based on immune principles to do 

unsupervised learning with the goal of detecting network intrusions. The algorithm uses a gene 

library for detector generation, along with negative selection and clonal selection to train the 

population of antibodies. The algorithm uses the Hamming distance, along with a threshold value 

to define the matching rule between antibodies and data. This algorithm is considered to learn in 

an unsupervised manner because it does not need labeled data to learn normal network behavior. 

The performance of the algorithm was tested using the DARPA Intrusion Detection Dataset. 

An IDS may also be implemented across many hosts which then work cooperatively to 

solve problems. For example, in [36] He, Yiwen, Tao, and Ting propose a collaborative model for 

AIS intrusion detection systems. More specifically, the algorithm is used to detect malware across 

a network through the use of Immune Collaborative Bodies (ICBs), which is a collaborative 

assembly of AIS algorithms working on different hosts which exchange information between them. 

In the paper an architecture is proposed to organize the different parts of an AIS algorithm: one 

element learns new patterns in the environment, another element select mature detectors 

(antibodies) from the population that have proven to be useful, and a third element exchanges 
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mature detectors between hosts. A protocol is also included for different hosts to join, collaborate 

with, and leaver ICBs. No experiments are performed with the new algorithm. 

Yeom and Park proposed a collaborative AIS approach in [37]. The AIS algorithm is 

implemented as a set of mobile agents that work on a wireless ad-hoc network. Because of the 

ever-changing nature of an ad-hoc network, the features of the AIS approach to network security 

are very useful, for example: its distributed nature and its lack of a central point of failure. 

Additionally, autonomous agents are able to function autonomously and asynchronously, adapt 

dynamically, add robustness and fault tolerance to the system. In the proposed system, any host in 

the system is able to create agents, but only one host does so. Agents travel from host to host 

monitoring the system call data originated by only one process, looking for anomalous behavior, 

as defined by a database containing normal data about normal system behavior. Some experiments 

were carried out and described, but remained highly theoretical with no results reported. 

In [38], Boukerche, et al. propose another mobile agent-based architecture for IDS that is 

inspired by AIS principles. In this system, the agents monitor the system logs of the host using 

Logcheck audit tool, and distribute the logs across the network using the syslogs-ng tool. There 

are four different types of agents: monitoring agents, delivery agents, reacting agents, and 

persistent agents. If abnormal activity is found, the IDS responds in two possible ways: by sending 

an email to a network administrator, or by disabling the offending service. The proposed system is 

extensively tested in real-world situations. In [39] and [40], Ou proposes a multi-agent AIS 

algorithm for detecting viruses. The algorithm works by gathering data from the system calls made 

by programs running on hosts. The agents work with a centralized proxy server to run a dendritic 

cell AIS algorithm that generates a danger signal.  
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Zeidanloo, Hosseinpour, and Borazjani [41] used an AIS algorithm as a part of an algorithm 

to detect botnets. The algorithm attempts to cluster hosts based on similar network activity based 

on two features: average number of bytes per second and average number of bytes per packet. The 

AIS algorithm is then used to detect two activities commonly carried out by botnets: port-scanning 

and spamming. The information from the clustering algorithm and the AIS algorithm is then 

combined by an analyzer to find the subset of hosts that are part of a botnet. 

Zhang, et al. [42] apply AIS to accomplish NID on the smart grid, which is the growing 

field of applying algorithms to the power grid. The AIS algorithm is implemented at three 

locations: the Home Area Network (HAM), the Neighborhood Area Network (NAN), and the Wide 

Area Network (WAN). Data is exchanged between HANs at the NANs, and data is exchanged 

between NANs at the WANs. The AIS algorithms use clonal selection to detect attacks, and is also 

able to provide extra information about the attacks, such as what type of attack it is. 

In [43], Rassam, and Maarof investigate the use of an immune-inspired clustering approach 

to perform unsupervised learning. The rough set method was used to perform feature selection on 

the dataset, then an algorithm known as aiNet was used to perform clustering on the DARPA KDD 

Cup ‘99 NID dataset. The clustering algorithm is based on artificial immune networks and was 

used to cluster the data into the following types of attacks: denial-of-service attack, probing, user 

to root attacks, and remote to user attacks. Feature selection is found to improve the performance 

of the aiNet clustering algorithm, and aiNet is found to give better detection accuracy than the k-

Means algorithm. 

Wang, He, Xue, and Dong, [44] developed a technique to detect DoS attacks in real time. 

Real-time detection is achieved by storing the features extracted from network flows in a tree data 
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structure, and training using negative selection. The algorithm is able to detect many types of DoS 

attacks without any previous knowledge. In [45], Srivastava and Mukhopadhyay apply the AIS 

paradigm to detecting anomalous behavior in a VoIP network using an immune-inspired algorithm 

called MILA. The algorithm gave a false alarm rate as low as 12.5% and a detection rate as high 

as 100%. 

In [46] Le Boudec, and Sarafijanović present an algorithm to detect misbehavior in a 

mobile ad-hoc network. Mobile ad-hoc networks are especially susceptible to attackers, since the 

hosts in the network also forward and route traffic. Because of this, misbehavior detection is very 

important, so that compromised nodes can be discovered and dealt with. This paper deals with 

detecting misbehavior in networks using Dynamic Source Routing (DSR). The AIS algorithm 

described in this publication uses negative selection to train a population of antibodies to detect 

misbehaving nodes in the network. The antigens are string of network operations performed by a 

host, as detected by other hosts, which includes DSR route discovery and normal data transfer. The 

proposed algorithm is tested using a network simulator called Glomosim. The algorithm was able 

to detect misbehaving nodes 50%-60% of the time. 

In [47], Drozda, Schaust, and Szczerbicka, apply the principles of AIS to detecting 

misbehavior in another type of network: wireless sensor networks (WSN). WSNs operate 

autonomously, have limited computing power, and are battery powered. The authors propose an 

AIS algorithm that uses r-contiguous string matching and negative selection, training on a dataset 

consisting of 5 features (called genes in this publication). The tests performed and statistics 

gathered were specifically modeled to determine whether an AIS algorithm works well in a WSN, 
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specifically using the random waypoint model. As with [46], Glomosim was used to perform the 

simulation.  

In [48] and [49], Mohamed and Abdullah applied an immune-inspired technique to 

securing a mobile ad-hoc network (MANET). Their system is based around three types of agents: 

manager and monitor agents, which are static, and replicate and recover agents, which are mobile. 

The manager resides in one node and maintains a database of normal system behavior that is 

gathered by the monitor agents. The algorithm uses negative selection, clonal selection and danger 

theory to maintain a population of antibodies. No experiments were performed to test the efficacy 

of this approach. 

Liu and Yu [50] work on NID in Wireless Sensor Networks (WSNs). The AIS algorithm 

proposed used negative selection and clonal selection with r-contiguous bit matching. Tests are 

performed on the algorithm, and it achieves 100% detection rates across five attack types: route 

looping, jamming, sinkhole attack, wormholes, and black holes.  

Yang, Guo, and Deng, [51] use an AIS algorithm to detect illegal operations in RFID 

networks. They use a simple negative selection algorithm to train the population of antibodies to 

classify activity on the RFID network as “self” and “non-self.” Finally, an AIS clustering algorithm 

is used to cluster the “non-self” activity that is detected, and these clusters are used to build a 

danger signal. They were able to achieve a 98% recognition rate. 

The research reviewed in this section shows that AIS algorithms are very promising as 

classifiers because they can evolve and deal with changing conditions. AIS algorithms have the 

potential to be a powerful approach to network intrusion detection. Their wide application to 

networking problems is useful for the current research. However, a common theme in the early 
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literature of NID system using AIS algorithms is the inability of AIS algorithms to scale to real-

world problems. An exposition of research meant to address this shortcoming is shown in a future 

section. Being aware of these shortcomings, inspiration was drawn from the performance of AIS 

algorithms and their applications to network problems to use them in a new application area. 

However, the common negative selection and clonal selection algorithms were not to train the 

current classifier.  

 

Network Flow Classification 

 

Network flows are sets of packets which are defined by a common source IP address, 

destination IP address, source port number, destination port number, and protocol. A network flow 

can be thought of as a sequence of packets from a source to a destination on a network. A network 

flow is one of many ways to split up network traffic, and is useful in many situations. A network 

flow can be categorized in a few different ways, a few of which are explained in this section. All 

of the approaches featured in this section use the statistical features of the network traffic to 

perform classification. 

One way to categorize network flows is by the application type that generated the flow. 

This section describes the work that has been done in applying Machine Learning algorithms to 

the classification of network flows by application. 

Moore and Zuev tested the Naïve Bayes classifier in [52], applying it to a data set of 

network flows. The simplest Naïve Bayes classifier did not do very well on the full set of features 

of the dataset. However, the accuracy rose substantially when Fast Correlation-Based Filter 

(FCFB) feature reduction was performed on the data set, as well as when kernel density estimation 
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was completed. The methods were tested together and separately, and the highest accuracy was 

achieved when FCFB and kernel density estimation were used together, achieving 96.3% accuracy. 

A review of the state of network traffic classification is presented in [53]. The paper 

includes an evaluation of the machine learning algorithms used, elephant and mice flows, and early 

classification of network flows. Information concerning the processing time, memory, and 

directional neutrality of all algorithms presented is also included in the paper. 

A review of a few different Machine Learning Algorithms is presented in [54]. The 

algorithms tested were: Support Vector Machines, C4.5, RIPPER, and Naïve Bayes classifiers. The 

algorithms were tested on three publicly available data sets, and were also tested on encrypted 

network traffic. Additionally, the authors of [55] tested many of the same algorithms as [54]. The 

algorithms were: Multi-layer perceptrons, C4.5 trees, Bayes Net, Naïve Bayes, and Radial Basis 

Function Neural Networks. The best performing algorithm tested in [55] was the C4.5 algorithms. 

The authors of [56] also test learning tree classification algorithms on network flow classification, 

but focusing on the accurate classification of P2P traffic. They achieve a maximum accuracy of 

97%. 

The selection of the statistical features that are most useful in classifying flows is also an 

important area of research. The authors of [57] give a survey of the reasons why some algorithms 

perform well on the flow classification problem, and the features that are most important. They 

show that there are most useful are: ports, the sizes of the first one or two packets for UDP flows, 

and the sizes of the first four or five packets for TCP flows. 

Early classification of network flows is done by limiting the number of packets that need 

to be examined before a flow is classified. The authors of [58] show that it is possible to achieve 
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good accuracy with information gleaned from only the first 7 packets in a flow, supporting the 

findings of [57]. They use a one-against-all SVM classifier. The last paper is [59], which contains 

a survey of many Machine Learning techniques, including the removal of outliers from the data 

set, dimensionality reduction, and data normalization. After this, decision trees, Naïve Bayes, and 

Bagging and Boosting classifiers are tested. 

In [60], the authors use Extreme Learning Machines (ELM) to tackle the supervised 

learning network traffic classification problem. ELMs are like artificial neural networks, however, 

ELMs use randomized computational nodes in the hidden layer and generate their weights by 

solving linear equations. A similar approach is taken in [61], although the ELMs used are kernel 

based. In this study, over 95% accuracy was achieved using different activation functions. 

In [62], the same problem is undertaken using an original approach that fuses Hidden Naïve 

Bayes and K* classifiers. Feature selection is done using Correlation Based feature selection and 

Minimum Description Length. In [63], the researchers build an anomaly detection system using 

machine learning techniques. The system is meant to detect anomalies within the traffic in a 

cellular network and it is built using Random Neural Networks. The approach is tested on 

synthetically generated data. 

The research in [64] seeks to identify traffic flows generated by a mobile messaging app 

called WeChat. To achieve this, 50 features were extracted from every traffic flow within two data 

sets. Several different classification approached were used, including: SVM, C4.5, Bayes Net and 

Naive Byes are applied to classify the WeChat text messages traffic. Very high accuracy was 

achieved in both data sets. The research contained in [65] seeks to solve the traffic classification 

problem in the same way as other research presented in this section. They use SVM classifiers to 



45 

 

classify flows into two categories: Video and Other. The researchers were able to achieve accuracy 

of 90% and above.  
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CHAPTER IV  

 

LITERATURE REVIEW 

 

In this chapter, a literature review for three research topics will be presented. The first 

section of this chapter deals with previous work in the extension of AIS classifiers into the multi-

class classification problem domain. The second section with previous research in positive 

selection AIS classifiers. The third section shows all previous work in the optimization of the 

Negative Selection algorithm. 

 

Multi-Class Artificial Immune System Classifiers 

 

Natural immune systems work as binary classifiers, categorizing every cell as either “self” 

or “non-self.” Consequently, artificial immune systems classifiers are limited to binary 

classification as well. There has been some research to expand the ideas present in AIS classifiers 

into multi-class classification. This section presents all of the previous research found. 

The earliest attempt is shown in [66], by Goodman, Boggess, and Watkins. They design 

and test an algorithm they call the Artificial Immune Recognition System (AIRS). They also test 

it against Kohonen’s Learning Vector Quantization algorithm (LVQ). Their algorithm works 

similarly to the k Nearest Neighbors algorithm (kNN), in that it trains a population of antibodies 

to classify examples by matching to the nearest antibody, however, the training set is not directly 

used to perform classifications. However, the AIRS algorithm is more efficient, since it requires 

on average half of the comparisons to perform classification as kNN. It also does not require 

perfectly tuned parameters to perform well. Watkins expanded on the concept of resource-limited 

AIS algorithms in his master's thesis [69], and published two further papers on the subject [70-71] 

with Boggess. The algorithm described in [70] and [71] also works with multi-class classification. 
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The algorithm works in several stages to train a population of data points called artificial 

recognition balls or ARBs that are then used for classification. 

Resource-limited algorithms seek to minimize the amount of time and memory taken to 

perform a task. Timmis and Neal take this into account and design a multi-class AIS classification 

algorithm and present it in [67] and [68]. A similar algorithm is developed by Cheng and Cheng in 

[72], in which apply their algorithm to the diagnosis of thyroid diseases. They implement an AIS 

algorithm which uses the clonal selection principle, forcing the population to compete for 

resources. They also implement multi-class classification by using an all-against-all classifier. 

Their classifier achieves 99.87% accuracy. 

Greensmith and Cayzer also propose an algorithm similar to AIRS and show how to apply 

it to Internet document classification, although they do not show any results [73]. Carter, in [74], 

combines several lines of research into one algorithm, which he calls Immunos. The algorithm 

does not require antibodies to be of the same length, and performs well against other Machine 

Learning algorithms. 

White and Garret propose a new way of using the clonal selection principle in [75]. They 

use it to recognize patterns, designing a new algorithm to do so, which they call CLONCLAS. 

They test their algorithm by recognizing binary character patterns, achieving good accuracy but 

taking a long time to train the classifier. In a similar approach, Brownlee presents a multi-class 

AIS classifier in [76] called CSCA. 

Markowska-Kaczmar and Kordas use the Negative Selection algorithm in [77] and [78] 

with a one-against-all scheme to create a classifier that is able to do multi-class classification. Their 

algorithm works with each class in the data set individually, developing a sub-population of 
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antibodies for each class. An example is classified by exposing it to all of the antibodies, and the 

class is selected based on which sub population of antibodies matched the examples the least 

number of times. 

The idea of performing multi-class classification with AIS algorithms is not new. However, 

all of the previously explored approaches are very complicated, and do not lend themselves to 

resource-constrained systems. This is because almost all of the approaches taken in previous 

research to do multi-class classification with AIS algorithms use an iterative optimization 

approach, using Clonal Selection. Clonal Selection is able to achieve high accuracy, however, they 

require a lot of time to achieve these results. As shown in previous sections, there is a large amount 

of research into the application of AIS algorithms to networking problems.  

A problem that appears more than once in the literature is the inability of AIS algorithms 

to be useful in real-world applications. Specifically, in [27-30], it can be seen that generating the 

necessary number of antibodies will take a too long for the algorithm to be useful. One of the 

reasons behind this weakness is the fact that Negative Selection algorithms map the negative space 

of a class, the negative space being simply the feature space that is outside of the class boundaries 

of a particular class. Furthermore, the negative space is mapped using randomly generated 

detectors. 

Because of the reasons detailed above, a simpler algorithm was developed by us for 

classifying network flows. The algorithm described in this work seeks to use the strengths of AIS 

algorithms, while making them usable in real world scenario. To this end, the negative selection 

algorithm is replaced with the positive selection algorithm. Also, the training algorithm longer 

generates detectors randomly, which takes a long time. Instead, it leverages samples taken directly 
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from the data set. These tradeoffs might decrease the accuracy of the algorithm, but they allow the 

algorithm to be fast enough to be applied to real-world problems. No other research that applies 

AIS algorithms to network flow classification by application has been found. This research marks 

the first time this has been done. 

 

Positive Selection Artificial Immune System Classifiers 

 

The use of AIS algorithms on multi-class problems has been explored in previous 

publications. The research made use of antibodies defined as hyper-spheres in the feature space, 

in the same way as the current research. However, there have been problems found in the use of 

hyper spheres in high-dimensional spaces [79]. Furthermore, hyper spheres have been used 

because of their simplicity of representation, and small memory requirements. There have been 

other representations proposed to replace hyper spheres [80-82]. Hyper spheres are a natural fit 

when the feature space contains data that is real-valued or ordinal. The authors of [83] provide a 

good review of the work that has been done up to 2007. 

The authors of [84] use the positive selection algorithm to build an algorithm for change 

detection and also compare it to a negative selection algorithm. The algorithm is a simple reversal 

of the positive selection algorithm, where detectors are generated randomly, and selected to join 

the population of detectors if they match sample of the “self” set. The algorithm shows improved 

change detection in some situations, when compared with negative selection. The authors suggest 

that a hybrid of negative and positive selection may be useful. 

The author of [85] demonstrates a hybrid algorithm, combining negative and positive 

selection approaches. The algorithm is used to detect anomalous behavior. The algorithm uses 

positive and negative selection in different stages to create a population of antibodies. The final 
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goal of the algorithm is to decrease the false positive rate in an anomaly detection algorithm, 

however the algorithm is not tested and no real-world performance measures are given. 

The work found in [86] uses positive selection classification as well as hyper-sphere 

detectors and is based on the work in [84]. However, the population of antibodies is not trained 

using positive selection, but with the clonal selection algorithm. The authors use their classifier as 

a binary classifier and achieve multi-class classification using a one-against-all scheme. Their 

algorithm is tested on an anomaly detection task, being used to detect malware infection by 

examining API call traces and kernel mode callbacks. The algorithm was able to outperform all 

other algorithms that it was tested against on this task. The same authors further tested the same 

algorithm in [87], and found that it outperformed all other algorithms in the UCI Diabetes dataset, 

with 79.9% accuracy, also achieving 96.7% accuracy on the UCI Iris data set. 

In [88], Yu and Dasgupta develop an AIS algorithm with a novel detector generation 

scheme and test its performance on a NID dataset. The detectors are hyperspheres with a variable 

radius, and the placement of any new detectors is only possible within spaces in the hyperspace 

that are not already within any detectors. This new detector generation scheme is near-

deterministic and not completely random, unlike previous schemes. This new scheme is able to 

generate a detector population with an optimal distribution, and to make the algorithm much more 

efficient. The proposed algorithm is tested on the DARPA Intrusion Detection Dataset, and 

compared with a single-class SVM, showing promising results. Although this research is similar 

to the research presented in this work in its use of hyper-spheres as well as its optimizations, it is 

still differs substantially in many other respects. 
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In all of the research discussed in this section there has been no work in the optimization 

of positive selection algorithms. The way in which the training algorithm was developed in the 

previous research makes it very easy to optimize. Furthermore, the algorithm already does not 

require many parameters, making it an excellent choice for embedded computers. There are some 

optimizations for the Negative Selection algorithm as detailed in the next section, but they are not 

applicable to this work. The original contribution of this research will be to optimize the execution 

of the algorithm already developed, as well as maximizing the accuracy of the algorithm. Figure 7 

shows the position of the current research in relation to other research described in this section. 

 

Optimizations for the AIS Negative Selection Algorithm 

 

Since the invention of the Negative Selection algorithm, its usefulness for real world 

applications has been questioned. Indeed, the algorithm is very slow when compared with other 

machine learning algorithms. Nonetheless, the algorithm has proven to be useful when training on 

data sets that only have examples of one class, essentially mapping the “positive space” of the 

missing class by mapping the “negative space” of the class that is present in the data set. For 

reasons of its usefulness in some contexts, there has been some research into optimizing the 

algorithm by speeding up the most common operation of the algorithm, the comparison between 

detectors and examples (strings). 

The first research into optimizing the Negative Selection algorithm is by Elberfield and 

Textor in [89]. Their research only applies to NS algorithms that work on strings, and use r-

contiguous and r-chunk string detectors. They show how compressing the population of antibodies 

can lead to faster training and classification performance. The compression scheme stores all 

common prefixes of antibodies in one place. The set of prefixes is used to make comparisons  
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Figure 7. Current Research Position 

 

 

between antibodies and strings, making both the training and classification much faster. The 

compression technique makes the complexity polynomial, where it was exponential before. This 

research demonstrates that it is not necessary to store antibodies in full, and it is not necessary to 

perform all comparisons when training an antibody.  

Following the lead of [89], the same authors continue their research in [90]. However, the 

use a very different approach to the optimization of the Negative Selection algorithm. Whereas 

[89] showed how the antibody population could be compressed, [90] shows how the actions of the 

NS algorithm could be simulated without actually generating an antibody population at all. The 
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authors illustrate how this is possible using only r-contiguous and r-chunk detectors. The paper 

gives proofs of the feasibility of the proposed approach only, and does not implement or test it. As 

with [89], the complexity of the NS algorithm goes from exponential to polynomial with this 

approach.  

The authors of [89] and [90] continue their research with [91]. In this paper, the authors 

prove that it is possible to train an automaton to simulate the NS algorithm, and to do so in 

polynomial time. The automaton is then used for classification. This paper uses prefix trees, as 

opposed to [89]. 

The last work by Textor on the subject of optimizing the execution of negative selection 

algorithms is [92], where one further variation from the previous approaches is explored. In the 

publication, detectors are generated by sampling from the set of S-consistent detectors. S-

consistent detectors are defined to be the set of detectors that do not match any element in the S 

set, which is the set of self samples. Whereas the NSA algorithm normally samples the space of 

possible detectors uniformly, the author shows that by doing this differently, it is possible to speed 

up the execution of NSAs. This paper theoretically proves that it possible to speed up the execution 

of NSA by using probabilistic sampling techniques such as Markov Chain Monte Carlo methods. 

In [93] and [94], Want, Yibo, and Dong also propose a method to do optimization for NS. 

Their work divides the feature space into “neighborhoods” for both antibodies and samples to be 

classified. By doing this the number of comparisons that need to be performed is reduced. They 

also introduce a method to improve the matching operation between detectors and samples that 

improves the performance, especially in high dimensions.  
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Both [95] and [96] show a similar approach to the optimization of NS as [93] and [94]. By 

separating the feature space into regions, called “grid cells,” the antibodies can be compared only 

with points within their own grid space. This approach to comparisons also eliminates exponential 

time complexity, speeding up the execution of the algorithm. The authors call the algorithm GF-

RNSA, and also report experimental results.  

Lastly, a novel antibody generation method is proposed in [97]. The method was developed 

by Ji and Dasgupta and is called V-detector. The strategy involves the statistical analysis of the 

data in order to improve the amount of non-self space that is covered while also minimizing the 

number of antibodies needed to do so. The antibody generation process also takes into account the 

boundary of the classes in the data set. The antibodies are allowed to be of variable size, as well. 

These techniques allow the algorithm to be very efficient. The scheme is also applicable across 

many different antibody types.  
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CHAPTER V  

 

RESULTS 

 

This section explains some of the work that is already completed. Some of the work 

described in this section is published and other work will be submitted at a later date. 

 

Multi-Class AIS Applied to Classifying Network Flows 

 

This section describes our first published work in this area, including a description of the 

data set used throughout our research. 

The problem of traffic flow classification has become harder and harder in recent years as 

application designers take steps to hide the activities of their programs on the network. On the 

other hand, traffic classification has increased in importance as well because of the need of network 

administrators to stop the use of illegal applications on their networks. Because of all of the 

previous work in the use of AIS algorithms with networking problems, particularly to the 

classification of network connections, the problem of network traffic classification is particularly 

attractive to the application of an AIS classification algorithm. The material in this section shows 

an AIS-inspired classification algorithm applied to a network flow classification data set. The use 

of kernel functions with the algorithm is also tested. The algorithm is tested on the data set and 

several performance measures are displayed in figures. The work described in this section first 

appears in [98-99]. 

 

Description of the Data Set 

 

The data set used to test the algorithm was first used in [52] in research by Moore and Zuev. 

The researchers have made the data set available to other researchers. The data set contains about 
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370,000 samples, with each sample having 249 features. Each sample represents one traffic flow 

on a real network, with the application type that generated the data carried over the flow. Since the 

current research aims to classify network flows according to the type of application that generated 

the data in the flow, this data set is ideal. A network flow is a sequence of packets, traveling over 

a network from one host to another. The flow is defined by a 5-tuple, which contains the source 

and destination IP addresses, the source and destination ports, and the transport protocol used. 

We make use of the feature reduction process performed in [52], taking advantage of the 

previous research. The analysis is important to deal with the curse of dimensionality, a well-known 

problem in machine learning, because of which the processing time for a ML algorithm rises 

exponentially as the number of feature rises. Furthermore, not all features are useful in making 

predictions, and their inclusion may be detrimental to the accuracy of the classifier. The original 

249 features are analyzed and 11 features are chosen to be used in the tests. The feature reduction 

process used in [52] is Fast Correlation-Based Filter. The names and descriptions of the 11 features 

used are listed in Table 1. 

The data set assigns each sample to an application class, which may contain many 

individual applications within it. There are a total of 12 application classes in the data set, which 

are listed in Table 2. The FTP application class listed in the table is separated into three different 

class labels within the data set, encompassing control, passive and data FTP flows, respectively. 

Tables 1 and 2 originally appear in [52]. 
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Table 1. Features and Descriptions 

Feature Description 

Port, server Port Number at server 

Number of pushed data packets, server→client # of packets with the PUSH bit set in 

the TCP header 

Initial window bytes,  client→server # of bytes in the initial window 

Initial window bytes, server→client # of bytes in the initial window 

Average segment size, server→client The average segment size 

IP data bytes median, client→server Median of total bytes in IP packets 

Actual data packets, client→server # of packets with at least a byte of 

TCP data payload 

Data bytes in the wire variance, server→client Variance of # of bytes in Ethernet 

packet 

Minimum segment size, client→server The minimum segment size 

RTT samples, client→server a. The total number of Round Trip Time 

(RTT) samples. 

Pushed data packets, client→server # of packets with the PUSH bit set in 

the TCP header 
 

© 2005 ACM 
 

Table 2. Class Labels and Applications 

Class Label Applications 

FTP-CONTROL, FTP-PASV, FTP-DATA FTP 

DATABASE Postgres, Sqlnet, Oracle 

INTERACTIVE SSH,rlogin, telnet 

MAIL IMAP, POP2/3, SMTP 

SERVICES X11, DNS, ident, LDAP, NTP 

WWW WWW 

P2P KaZaA, BitTorrent 

ATTACK Worm and virus attacks 

GAMES Half-Life 

MULTIMEDIA Windows Media Player 

 
 

© 2005 ACM 
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Description of the Algorithm 

 

The algorithm described in this section is not the final version of the algorithm proposed, 

and has several weaknesses that were dealt with as the research progressed. It is the algorithm that 

is used to generate the results described in this section, so it is described briefly here. 

As described in the previous section, the algorithm uses features that are calculated from 

the data flowing over the network. All of the features used in this research are real-valued and it is 

assumed that the features are calculated for each flow before the algorithm is executed. The set of 

classes found in the data set is given to the algorithm. The pseudo code for the first version of the 

training algorithm is in Figures 8 and 9.  

As described in previous sections the algorithm is inspired by mechanisms found in the 

natural immune system. As such the algorithm is an ensemble classifier, with each base classifier 

being a hyper-sphere. Each hyper-sphere is defined in a space having the same number of 

dimensions as the data set, in this case 11 dimensions. Each hyper-sphere is also defined with a 

real-valued radius, as well as a class label which denotes to which class the antibody belongs to. 

Before the training algorithm is run the data set is normalized to the range [0, 1] using a simple 

formula: 

 𝑋𝑖 =  
𝑋𝑖

max(𝑋𝑖)−min(𝑋𝑖)
 (10) 

where Xi is the value of the vector X in the ith dimension, and the data set is made up of real-

valued vectors. The functions max() and min() are used to denote the maximum and minimum 

value in each dimension in the data set. This normalization is meant to simplify  
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Figure 8. Pseudo Code for Initialization and Training Algorithm 

 

 

 

input: 

 training_set: set of training vectors, class label is the first element of the vectors 

 classes: the set of class labels collected from the data set 

 population_size: a parameter, the desired size of the antibody population 

 step_size: a parameter given to the algorithm  

output: 

 population: the set of antibodies used to classify flows 

functions: 

 error_count: returns the number of misclassifications performed by an antibody  

  

Initialization: 

training set = normalize(training_set) 

population = {} 

FOREACH { c | c ∈ classes } 

class_data = { i | i ∈ training_set, i[“class”] = c } 

counter = 0 

WHILE counter < ⌈population_size

|classes|
⌉ 

new_antibody=[“center”=random(class data), “radius”=0.0, “class”=c] 

population = population ∪ new_antibody 

counter = counter + 1 

ENDWHILE 

ENDFOREACH 

Training:  

FOREACH {p | p ∈ population} 

changed = True 

WHILE changed 

IF error_count(p) > 0 

p[“radius”] = p[“radius”] - step_size 

changed = False 

ELSE 

p[radius] = p[“radius”] + step_size 

changed = True 

ENDWHILE 

ENDFOREACH 

 

© 2014 IEEE 
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Figure 9. Pseudo Code for Classification Algorithm 

the code, allowing the radius of each hyper-sphere to be defined once instead of for each 

dimension. In the pseudo code, p[“center”] defines the center point, p[“radius”] defines the radius, 

and p[“class”] defines the class that the hypersphere belongs to, all attributes of hypersphere p. In 

the same way, i[“center”] defines the center point, and i[“class”] defines the class that the point 

belongs to, all attributes of point i. 

The training algorithm takes two parameters: the size of the population of antibodies to be 

generated, and the step size. The size of the population is simply the number of hyper-spheres used 

to make the ensemble classifier. The step size parameter will be explained below. Since each hyper-

sphere exists within a space with the same number of dimensions as the data set, the data set can 

be used to initialize the antibody centers. Indeed, to initialize the population of antibodies the 

training data set is randomly sampled with replacement, and each new hyper-sphere added is 

input: 

 classes: the set of class labels collected from the data set 

 pattern: the pattern to be classified 

 population: the set of antibodies used to classify flows 

output: 

 class label: the class that example is predicted to be in 

  

Classification: 

distances = {} 

 FOREACH { p | p ∈ population } 

  d = distance(pattern, p) 

 IF d <= p[radius]: 

  return p[class] 

 ELSE 

  distances = distances ∪ {(p[class], d)} 

ENDFOREACH 

 a = argmin distance(pattern, a) {a | a ∈ population} 

return a[class] 

© 2014 IEEE 
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centered on a sample. The radius of each new hyper-sphere is initialized to zero, with the new 

antibody having the same class label as the sample used to create it. Each class is allocated an 

equal portion of the antibody population. 

Once the population has been initialized the training algorithm proceeds to set the radius 

of each hyper-sphere. To set the radius of one hyper-sphere, the radius is iteratively increased, 

increasing by the step size parameter for each iteration. After each increase in the radius, the 

antibody is checked against the whole training set. If hyper-sphere contains a data point that is not 

of its own class, then the radius is decreased by the step size. This guarantees that the radius of 

each antibody is a multiple of the step size parameter. Within the pseudo code in Figure 8, the 

antibody is checked against the whole training data set using the error_count function, which 

returns the number of misclassified data points for the antibody under examination. 

The output of the training algorithm is the set of antibodies which is used by the 

classification algorithm. During the classification phase, the captured features of the network 

traffic flow that needs to be classified is matched against the population of antibodies. To perform 

classification, the set of antibodies is compared, one by one, to the point in feature space that 

represents the flow to be classified. The class of the first antibody that is found that contains the 

flow is returned as the class label of the flow. If no antibody is found that contains the flow, then 

k-NN is performed with the set of antibody centers, with k being equal to 1. If the k-NN algorithm 

is unable to classify a pattern because it is the same distance from more than one antibody, then 

one of the classes that the antibodies belong to is chosen at random. The pseudo code for the first 

version of the classification algorithm is in Figure 9. 
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The tests described in this section of the dissertation were all performed with the step size 

parameter set to 0.01, this value was found to be a good compromise between training time and 

accuracy. As mentioned, the k parameter is set to 1, and is not changeable in this version of the 

algorithm. In this section the algorithm is tested with the Euclidian distance function. Kernel 

functions are also implemented. Kernel functions are used in other classifiers to deal with data that 

is not linearly separable into classes. Kernel functions are able to deal with this problem by 

projecting the data into higher dimensional spaces, were it can be more easily separated. Kernel 

functions are used extensively with SVM classifiers. 

 

Results 

 

The tests performed to show the performance of the algorithm all follow standard Machine 

Learning practices. For every test in this section, the data set was split up into three sub data sets, 

the testing set, validation set, and training set; with each taking 10%/10%/80% of the data set, no 

matter the size. All of the tests performed make use of stratified cross validation. All tests were 

performed on an Intel Core i5 running at 1.8 GHz with 4 GB of memory. 

The algorithm is tested using Euclidian distance, and this is used to provide a baseline for 

the performance of the algorithm. However, a technique borrowed from SVM classifiers is also 

tested here, in an attempt to improve the accuracy of the algorithm. Kernel functions are used to 

improve a classifier’s accuracy by projecting the vectors that make up the data set into higher-

dimensional spaces. In doing so, kernel functions make it easier to find and define the class 

boundaries.  

To test the accuracy achieved by the algorithm on the network flow data a set of tests were 

performed. The results of the first test are graphed in Figure 10. The independent variable is the 
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number of antibodies used by the classification algorithm, with the data set size held constant at 

1000 examples. Since the size of the antibody population is the independent variable, it is increased 

by quantities of 50, starting at 200 and ending at 1000.  

The accuracy achieved by the algorithm increased from 81.8% with 200 antibodies, to 91% 

with 1000 antibodies. The best performance on this test was achieved with the linear kernel, with 

92.3% accuracy. Figure 10 also includes data about the performance of the Naïve Bayes and SVM 

classification algorithms. The maximum accuracy of the Naïve Bayes algorithm is 82.2%, and the 

maximum accuracy of the SVM classifier is 44.1%. The Naïve Bayes and SVM algorithms are 

trained and tested with the same data sets as the AIS algorithm, ensuring a fair comparison, 

although they do not use an antibody population and are therefore not affected by the independent 

variable. 

The second test that was performed to measure the accuracy achieved by the algorithm is 

graphed in Figure 11. The dependent variable is the data set size, and it is increased in increments 

of 50, from 2000 to 1000 elements. The antibody population is held constant at 1000. The 

independent variable is the accuracy achieved by the classifiers. The accuracy of the algorithm did 

not rise as dramatically as in Figure 10, but it did go up from 86% to 92.3%. The best performance 

was achieved by the polynomial kernel, with 93.6% accuracy. As with the previous test, the SVM 

and Naïve Bayes classifiers were also trained and tested with the same data set, achieving a 

maximum accuracy of 42.6%, and 83.5%, respectively. Figure 11 shows the AIS algorithm having 

a higher accuracy than the Naïve Bayes and SVM classifiers. This highlights the AIS algorithm’s 

ability of generalizing from small data sets, outperforming the more well-known algorithms by a 

noticeable margin. Although the SVM algorithms have been proven to achieve very high  
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Figure 10. Classification Accuracy and Antibody Population 

 

 

 

Figure 11. Classification Accuracy and Data Set Size 
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accuracies, they typically require more training data to do so.  

Figs. 10 and 11 suggest the fact that using kernels does not improve the performance of the 

algorithm significantly. Although the maximum accuracy is achieved with kernel functions, it is 

not obvious that the AIS algorithm working with kernel functions outperforms the AIS algorithm 

without them. This observation is particularly important when utilizing the AIS algorithm in 

memory constrained embedded systems, as in the case of the Internet of Things (IoT). On such 

systems, it is not critical to employ kernel functions in conjunction with the immune system 

inspired classification algorithm to achieve high accuracy 

The next set of experiments were designed to test the running time of the training and 

classification portions of the AIS algorithm. Figure 12 shows the amount of time required to train 

the population of antibodies. The dependent variable is the size of the data set, the independent 

variable is the training time is seconds, and the size of the population of antibodies is held constant 

at 1000. The size of the data set used to perform training is increased from 200 to 1000 in 

increments of 50, as mentioned previously the size of the training set is 80% of that. The 

relationship is roughly linear, meaning that the size of the data set is linearly related to the running 

time of the algorithm. As with previous tests, the SVM and Naïve Bayes algorithms were also 

tested with the same data sets. Their running times were much faster and can be seen along the 

bottom of the figure. The kernel functions used with the training algorithm do not affect the running 

time in a marked way. Although the relationship between the size of the antibody population and 

the training time is not tested, it is expected that the relationship will be roughly linear as well. 

The running time of the classification algorithm is also tested. Figure 13 shows the amount 

of time required to classify 100 examples from the testing set. The amount of examples is 100  
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Figure 12. Training Time and Data Set Size 

 

because the testing set is 10% of the data set, which is held at 1000 for this test. The dependent 

variable is the size of the population of antibodies, the independent variable is the classification 

time in seconds. The dependent variable is increased from 200 to 1000 in increments of 50. It can 

be seen the classification time is roughly linearly related to the size of the population of antibodies. 

The use of kernel functions does not affect the running time of the classification in a discernible 

way. The SVM and Naïve Bayes algorithms are tested on the same data set, their running times 

prove to be much faster, seen along the bottom of the figure. However, these classifiers do not use 

a population of antibodies to perform classification, and are unaffected by the dependent variable, 

but they are included for completeness. 

When the accuracy of the AIS classifier is compared to results found in [6], an interesting 

contrast is seen: the AIS algorithm is able to achieve greater or equal accuracy than all other 
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Figure 13. Classification Time and Antibody Population Size 

 

classifiers with 1/3 of the training examples. However, this comparison is not stringent as different 

data sets are used. Although the current proposed algorithm classifier does not exceed the 

classification accuracy of the best classifiers, it is very good at generalizing from small training 

sets. This conclusion is supported by Figs. 10 and 11. 

The maximum accuracy achieved by the AIS algorithm was 93.66%, achieved with the 

polynomial kernel. The AIS algorithm was able to achieve 91.75% accuracy without using kernels. 

The algorithm is not able to match the accuracy achieved by other algorithms in the literature. 

However, the AIS algorithm proved to be able to get high accuracy with small sample sizes. The 

simple logic of the algorithm and its insensitivity to the use of kernels functions make it useful for 

resource-constrained systems, where these features are important. 
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Comparison to Previous Work 

 

The work found in [87] is most similar to the current research, thus their work is compared 

and contrasted to the current algorithm in this section. Both classifiers are designed to perform 

positive selection, with the antibody population mapping the positive self-space of each class. To 

achieve this, both algorithms attach a class label to each antibody in the population, while also 

using hyper-sphere antibodies. Both classifiers also use k-nearest neighbors with the hyper-sphere 

centers as a fall back when the hyper-spheres themselves fail to classify a novel example. Unlike 

the current algorithm, the classifier described in [87] does not allow hyper-spheres to overlap each 

other, incurring an extra processing cost to ensure this condition is met. The current AIS-inspired 

classifier does allow hyper-spheres to overlap, greatly simplifying the training process.  

Since the SVM algorithm is one of the best classifiers for almost any task, it is also 

compared here to the current algorithm. Simple SVM classification relies on classes present in the 

data set to be linearly separable, meaning that a line, plane, or hyper plane can be drawn that 

separates the space into distinct regions. A classic example of this is the XOR function, which is 

shown in Figure 14. In the figure, class A and class B cannot be separated with a single line. This 

problem is traditionally solved with the use of kernel functions. A kernel function projects the 

vectors in feature space into a higher-dimensional kernel space, within which the classes can be 

linearly separated. There are a few different kernel functions, each of which takes one or more 

parameters, which are usually determined by using a grid search on the validation set. 

The current algorithm is able to handle non-linearly separated classes within the data set 

easily, and without the use of kernel functions. Kernel functions are used in the tests discussed in 

this section, and it can be seen that their use did not clearly improve the performance of the AIS 
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algorithm. More importantly, since the current algorithm does not require kernel functions, the 

necessary parameters for them do not need to be determined, saving time during the training step.   

 

 
Figure 14. The XOR Function 

 

The SVM algorithm, like other AIS algorithms, is a binary classification algorithm. To be 

able to perform multi-class classification, more than one SVM classifier must be trained. With the 

on-against-all technique trains n classifiers, where n is the number of classes in the data set, each 

classifier being trained to distinguish between one class and all other classes. The all-against-all 

technique requires (n*(n-1))/2 classifiers to be trained, where n is the number of classes present in 

the data set, and each pair of classes is distinguished by one classifier. For the same reasons as the 

training algorithm, classification also takes a lot of time, since each classifier must be run on the 

sample to be classified. The current AIS-inspired classifier is built from the start to handle multi-

class classification. 

Determining the optimal location of the hyper plane that defines an SVM classifier is done 

using Lagrange multipliers, and is a quadratic programming optimization problem. The 
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optimization problem can be solved using well-known quadratic programming techniques that are 

used to find the maximum or minimum of a quadratic function that is limited by one or more linear 

constraints. The training portion of the current classification algorithm does not require any 

optimization techniques. It also does not require many parameters to run. The algorithm is simple 

and does not require complicated mathematics to understand. 

Kernel functions have been used with AIS algorithms in previous work [100]. However, 

this research does not implement a Negative or Positive Selection algorithm using kernel functions, 

but instead uses the aiNet algorithm.  

In conclusion, the classifier is simpler and requires less processing time, and requires fewer 

parameters. Additionally, the tests performed in this section have shown that the AIS classifier 

does not require a lot of training data to generalize well.  

 

Optimizing an Artificial Immune System Internet Flow Classification Algorithm 

 

This section further develops the algorithm proposed in the previous section, seeking to 

make the algorithm viable for real-world application. To accomplish this, the training and 

classification portions of the algorithm are optimized, and different techniques for improving the 

accuracy of the algorithm are tested. The work described in this section first appears in [101]. 

 

Changes to the Algorithm 

 

This section gives details on the optimizations designed for the original algorithm proposed 

in the previous section. The optimization done to the training algorithm is now described. To speed 

up the training process, k-d trees are used, making the search for nearest point much faster. K-d 

trees are a well-known data structure which organize a set of points in a binary tree, which then 
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allows the nearest point to be found in log n time, instead of linear time. The optimized training 

algorithm generates antibodies by sampling the training set, and creating a hyper-sphere center 

from the sample. The algorithm then set the radius of the hyper-sphere so as to not misclassify any 

points in the training set. The unoptimized training algorithm did this with a very inefficient loop, 

checking for misclassifications at every iteration.  

The optimized training algorithm iterates over the set of classes in the training set, creating 

a population of antibodies for each class of the same size. For the creation of each population of 

antibodies, the training algorithm creates two subsets out of the training set: the set of examples 

belonging to the class of antibodies being created, and the set of training samples belonging to all 

other classes. A k-d tree data structure is then created using the second subset. Generating a single 

antibody for the current class of antibodies being created is simple: sample the set of samples with 

the same class label as the antibody for the antibody center, then query the k-d tree for the distance 

to the nearest non-self sample. The radius is then calculated to be just small enough to not 

misclassify the non-self training sample returned by the k-d tree. In this manner, the radius is set 

in one step instead of iteratively as before. The pseudo code for the new training algorithm is found 

in Figure 15. In the previous section the step_size parameter was not allowed to vary, this is 

changed in this section and differing values of step_size are tested, improving the accuracy of the 

algorithm. In the pseudo code, p[“center”] defines the center point, p[“radius”] defines the radius, 

and p[“class”] defines the class that the hypersphere belongs to, all attributes of hypersphere p. In 

the same way, i[“center”] defines the center point, and i[“class”] defines the class that the point 

belongs to, all attributes of point i. 
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An important feature of this optimization is the fact that the optimized training algorithm 

is functionally identical to the unoptimized training algorithm. Accounting for the randomness 

used for sampling, the training algorithm will generate identical sets of antibodies with the 

optimized and unoptimized versions. 

The optimization done to the classification algorithm is now described. The classification 

algorithm has required an extensive redesign to be optimized. The unoptimized classification 

algorithm used a single loop, iterating over the set of hyper-spheres making up the antibody 

population. The distance between the hyper-sphere and the example to be classified was calculated, 

determining whether the example was within the hyper-sphere by comparing the distance 

calculated with the radius of the antibody. This required a lot of time and was very inefficient. 

The optimization for the classification is achieved through a process of filtering. Although the 

distance function is still calculated on a se*t of hyper-spheres, it is a much smaller set, requiring 

less time. The filtering happens in two stages, primary and secondary filtering. During primary 

filtering, the example to be classified is compared to the set of antibodies feature by feature, 

selecting only the antibodies that contain the example to remain in the set. Once a feature is 

processed, the set of antibodies is smaller, making subsequent comparisons faster. During primary 

filtering, the distance function is not calculated at all, relying instead on the radius of each antibody.  

Figure 16 shows primary filtering happening in two dimensions with two hyper-spheres. It 

can be seen that the example to be classified falls within the radius of hyper-sphere B. Filtering 

based on X feature, both hyper-spheres would be kept in the population, since the example falls 

within both in that dimension. Filtering based on the Y dimension would filter out the A antibody, 

since the example does not fall within the radius of the A antibody in that dimension.  
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Figure 15. Pseudo Code for the Training Algorithm 

 

input: 

training_set: a list of the training data points, each with an attached class label 

classes: the set of class labels present in the data 

population_size: the size of the desired population of antibodies 

step_size: a parameter (explained in text) 

tree: a k-d tree data structure for holding the training set 

output: 

 population: the set of antibodies used to classify flows 

functions: 

random: a function for selecting a random element from a set 

distance: a function for calculating the distance between points 

normalize: a function to normalize the data to the range [0, 1] 

 

Initialization: 

training set = normalize(training_set) 

Training Algorithm: 

antibodies = {} 

FOREACH {c | c ∈ classes } 

class_data = {i | i ∈ training_set AND i[“class”] = c} 

non_class_data = {i | i ∈ training_set AND i[“class”] != c} 

 

tree = tree.construct(non_class_data) 

counter = 0 

WHILE counter < ⌈population size

|classes|
⌉ 

proposed_center = random(class_data) 

nearest = tree.query(proposed_center) 

distance = distance(nearest, proposed_center) 

IF distance <= step_size 

 radius = 0.0 

ELSE 

 radius = distance – (distance % step_size) 

ENDIF   

new_antibody=[center=proposed_center,     radius=radius,class=c] 

antibodies = antibodies ∪ new_antibody 

counter = counter + 1 

ENDWHILE 

ENDFOREACH 

© 2016 IEEE 
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Figure 16. Explanation of Primary Filtering Scheme 

 

Secondary filtering is necessary because primary filtering is too permissive, because 

primary filtering only filters out antibodies based on the hyper-cubes removes antibodies that are 

outside the hyper cube that contains the hyper sphere that is each individual antibody. This is 

because of the “roundness” of hyper-spheres. Secondary filtering simply calculates the distance 

function between the example to be classifier and every hyper-sphere center remaining in the set. 

When the population of antibodies fails to classify an example, the optimized classification 

algorithm acts in the same way as before, by performing k-nearest neighbors classification with 

the antibody centers. However, the optimized algorithm does this in a more efficient manner with 

a k-d tree. Although, the k-d tree does cut down slightly in the classification time, it is not used in 

a large portion of the classifications, and its removal would not affect the classification time 

greatly. The pseudo code for the optimized classification algorithm is found in Figure 17. The 

conventions used in Fig 17 are the same as used in figure 16. 
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The optimized classification algorithm is not functionally the same as the unoptimized 

classification algorithm, unlike the training algorithm. The previous algorithm was naïve in one 

respect: it did not deal with the fact that hyper-spheres in the population are allowed to overlap. 

This is a problem because the first hyper-sphere that contained the example being tested was 

returned as the correct class label of the example. While being a more efficient implementation, 

there is a chance that the first antibody found would misclassify the test point. This is changed in 

this section by implementing majority voting with the antibodies that contain the example to be 

classified, each antibody having one vote and voting for its own class. If there is no majority found, 

the classification returns. The classification algorithm takes one parameter: k, which determines 

the number of antibodies used when performing k-NN classification. In the previous algorithm, 

this was not allowed to vary, being set to 1.  

No other research has been found that takes this or a similar approach to the comparisons 

between an example and a set of hyper-spheres. However, there have been some attempts at 

optimizing the Negative Selection algorithm. 

 

Model and Experimental Setup 

 

The algorithm is tested using 10-fold cross validation. This means that, for each data set 

created for the tests, the data set was split into 10 sub data sets, each with an equal proportion of 

samples for each class in the data set. The tests were repeated 10 times, using each sub data set for 

testing, training, and validation; the results were averaged after the tests were done. As before, the 

split between training, testing, and validation sets is 80%/10%/10%. The results of the tests are 

graphed in Figs. 18 through 23. The data set used is the same as in the previous section. The used 

are listed and described in Table 1. There are 12 classes in the data set, they are listed in Table 2. 
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Figure 17. Pseudo Code for Optimized Classification Algorithm 

As in the previous section, one subset is set aside to determine the best parameters for the 

algorithm, before being tested with the training set. Toward this goal, grid search is performed on 

the validation set, used for finding the parameters that give the highest accuracy. Grid search is 

performed on each test in this section, used for finding the best parameters for the k and step_size 

input: 

antibodies: set of the antibodies generated by the training algorithm 

tree: a k-d tree data structure for the antibody population 

k: a parameter for classification 

x: the test point to be classified 

output: 

class label: the predicted class label 

functions: 

most_common: returns the element with the highest count in the given set, or a random 

element if there is no majority 

distance: a function for calculating the distance between points 

Classification Algorithm: 

dimension = 0 

WHILE dimension < | antibodies[0][“center”] | 

antibodies = {a | a ∈ antibodies AND  

x[“point”][dimension] > (a[“point”][dimension] - a[“radius”]) AND 

x[“point”][dimension] < (a[“point”][dimension] + a[“radius”])] 

dimension = dimension + 1 

ENDWHILE 

selected_antibodies = {} 

FOREACH {a | a ∈ antibodies} 

d = distance(x[“center”], a[“center”]) 

IF d <= a[“radius”] 

selected_antibodies = selected_antibodies ∪ a 

ENDIF 

END FOREACH 

IF |selected_antibodies| > 0 

return most_common([[“class”] in selected_antibodies]) 

ELSE 

return tree.query(x, t=1)[”class”] 

ENDIF 

© 2016 IEEE 
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parameters, with the step_size parameter used in the training algorithm, and k used in the 

classification algorithm. The k parameter is varied between 1 and 12, and the step_size is varied 

between 0.01 and 0.99 in 0.01 increments. This process is different from the approach taken in the 

previous section, were these values were fixed. 

In general, four sets of experiments were performed on the algorithm, testing different 

aspects of the algorithm. The four sets of experiments are related to three claims about the 

performance of the algorithm: 

 

1. The new training algorithm is faster than the old training algorithm. 

2. The new classification algorithm is faster than the old classification algorithm. 

3. The classification performance of the old algorithm might be improved with different 

distance measures. 

 

The first two claims are easy to understand and follow from the previous sections. The 

third test is related to the use of distance functions other than the Euclidian distance, which is a 

standard in AIS research. To maximize the accuracy of the algorithm, several different distance 

functions are tested, including: Manhattan distance, dot product, cosine distance, Chebyshev 

distance, and for the purposes of comparison, Euclidian distance.  

The tests performed to compare the optimized and unoptimized version of the algorithm 

are designed to be as fair as possible. To this end, data sets are created of the required size by 

sampling the original data set with replacement. The same data sets are then used to test both 

versions of the algorithm. The random nature of the sampling used by the training algorithm is not 

accounted for, however. For the same reason, when testing the optimized and unoptimized versions 
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of the classification algorithm, a population of antibodies of the required size is created, and the 

same population is used to test both versions of the algorithm. This was done so that both versions 

of the algorithm could be compared without worrying about randomness affecting the results. 

The tests were performed on the same computer as the ones in the previous section. A 

computer with an Intel i5 processor running at 1.8 Ghz is used with 4 GB of memory. The operating 

system is 64-bit Windows 8.1. 

 

Results 

 

This section explains the results of the tests performed on the unoptimized and optimized 

algorithms. The algorithm is also tested with different distance functions. 

The results of the tests used to compare the performance of the optimized and unoptimized 

training algorithms are shown in Figs. 18 and 19. The relationship between the size of the data set 

and the time required by the training algorithm to create a 1000-member population of antibodies 

is shown in Figure 18. The dependent variable is the size of the data set, the independent is the 

time required by the training algorithm to finish, in seconds. The dependent variable increases 

from 200 to 1000 in increments of 50. It can be seen that while the training algorithm remains 

linear, the optimized version is still much faster.  
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Figure 18. Training Set Size and Training Time 

 

The relationship between the size of the antibody population and the time taken by the 

training algorithm is shown in Figure 19. The size of the data set used is 1000. The dependent 

variable is the antibody population, which varies from 200 to 1000 in increments of 50, the 

independent variable is the time taken for the training algorithm to complete. The optimized 

training algorithm is still, however, it is much faster than the old training algorithm. The SVM 

algorithm is tested on the same data sets as the optimized and unoptimized AIS algorithms in Figs. 

18 and 19. The SVM algorithm is still faster than the AIS algorithm, and its line can be seen along 

the bottom of the graphs. 

The relationship between the number of dimensions present in the data set and the time 

taken by the training algorithm is shown in Figure 20. The size of the data set used is 1000 samples, 

and the number of antibodies in the population is 100. The dependent variable is the number of  
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Figure 19. Antibody Population Size and Training Time 

 
Figure 20. Number of Dimensions in Data Set and Training Time 
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dimensions in the data set, which varies from 5 to 25, the independent variable is the time taken 

for the training algorithm to complete. The SVM algorithm is tested on the same data sets as the 

optimized and unoptimized AIS algorithms in Figs. 18 and 19. The SVM algorithm is still faster 

than the AIS algorithm in all three tests, and the line depicting its performance can be seen along 

the bottom of the graphs. 

The next set of tests is used to measure the running time of the classification algorithm, 

which works with the population of antibodies created by the training algorithm. Since there is no 

relationship between the size of the data set used in the training algorithm to train the antibody 

population and the running time of the classification algorithm, this variable does not appear in 

these tests or in the figures.  

The tests performed to compare the time required by the optimized and unoptimized 

classification algorithms are especially complex. The aim of these tests is to show the effect of the 

new majority voting classifier as compared to the previous implementation, as well as the effect 

of secondary filtering on the execution time. The four lines displayed in the figures are: the 

unoptimized classification algorithm without majority voting, the unoptimized classification 

algorithm with majority voting, and the optimized classification algorithm with and without 

secondary filtering. These tests were used in order to show the performance of the algorithm in 

many different configurations. 

A graph showing the relationship between the antibody population size and the time it takes 

to make a prediction is shown in Figure 21. There are several versions of the prediction algorithm 

compared in the figure. The dependent variable is the size of the antibody population, and the 

independent variable is the number of seconds it takes for the prediction portion of the algorithm 
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to complete. The dependent variable increases from 200 to 1000, in increments of 50. As can be 

seen in the figure, the prediction algorithm is still linearly related to the size of the population of 

antibodies, however, it is much faster. Majority voting proves to slow down the unoptimized 

algorithm considerably. When secondary filtering is not used by the optimized algorithm, the 

execution becomes much faster, however this does not give very good accuracy, as will be seen in 

another figure. 

The relationship between the number of dimensions present in the antibody population and 

the time taken by the prediction algorithm is shown in Figure 22. The number of antibodies in the 

population is 100. The dependent variable is the number of dimensions in the antibody population, 

which varies from 5 to 25, the independent variable is the time taken for the prediction algorithm 

to complete. 

Figs. 21 and 22 show that secondary filtering in the optimized algorithm is very important, 

since without it the accuracy of the predictions drops. However, secondary filtering also requires 

time to complete. Figure 21 also shows that primary filtering provides most of the speedup gained 

by the optimized algorithm. The predictions performed to make Figs. 21 and 22 are run 100 times, 

size because of the split between the training, validation, and testing data sets, which are 

80%/10%/10% respectively. Because of this, the prediction time displayed is actually the time 

taken to make 100 predictions, this is needed because predictions can be made very quickly and 

are harder to measure individually. 

The optimized prediction function proves to be faster than the unoptimized prediction 

function in Figs. 21 and 22. However, it is important to prove that the optimization does not 

degrade the results provided by the algorithm. In this context, it is of 
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Figure 21. Antibody Population Size and Prediction Time 

 

 
Figure 22. Number of Dimensions of Antibodies and Classification Time 
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interest to maintain the accuracy of the predictions. To prove that the accuracy of the optimized 

algorithm did not decrease as a result of the changes implemented, the accuracy of the four 

prediction functions is graphed in Figure 23. The depended variable is the size of the population 

of antibodies, the independent variable is the accuracy of the prediction algorithm. The dependent 

variable increases from 200 to 1000, with the size of the data set fixed at 1000. The prediction 

functions worked with the same population of antibodies, trained with the same data set. The 

accuracy remains the same, except for the version of the algorithm without secondary filtering, 

which decreased the accuracy significantly. The accuracy was expected to decrease, and this graph 

proves that the secondary filtering is absolutely essential for the algorithm to provide accurate 

predictions. 

As in the previous set of tests, the SVM is also tested against the AIS-inspired algorithm. 

The SVM algorithm is still faster than the AIS algorithm in Figs. 21 and 22, and its line can be  

 
Figure 23. Population Size and Accuracy 
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seen along the bottom of the graphs. However, Figure 23 shows that the AIS algorithms have 

higher accuracy, for the given data set size. 

For the tests that are displayed in Figs. 18, 19, 20, 21, 22, and 23, the algorithm was run 

using the Euclidian distance measure. This is a standard distance measure used in AIS 

research. However, in order to try to maximize the accuracy of the algorithm, some tests were 

performed using alternative distance measures. The distance measures tested are:  Euclidian 

distance, and Chebyshev distance, Manhattan, and Cosine distance. Figs. 24, 25, and 26 show the 

results of these tests. Although the dot product as a distance function was implemented and tested, 

the resulting accuracy was very low and did not merit inclusion in any of the figures. 

Figure 24 shows the relationship between the antibody population size used and the 

accuracy. The antibody population size is the depended variable, and the accuracy is the  

 

Figure 24. Antibody Population and Accuracy 
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independent variable. The antibody population size varies between 200 and 1000, in increments 

of 50. The size of the data set is fixed at 1000 for this test. Although it is not always the most 

accurate distance measure, it can be seen that the Manhattan distance is the most accurate 

throughout most of the range. The maximum accuracy achieved is 94.77% by the Manhattan 

distance measure. 

A confidence interval was calculated using data from Figure 24 for the difference in the 

accuracy between the algorithm using the Euclidian distance and the algorithm using the 

Manhattan distance functions. The difference was calculated by subtracting the accuracy of the 

Manhattan distance and the accuracy of the Euclidian distance, this made the difference positive. 

With these values a confidence interval was calculated at the 95% confidence level. The average 

difference in the accuracy was calculated to be between 1.9 and 1.16 percentage points. This shows 

that using the Manhattan distance gives higher prediction accuracy, and that it is not due to chance 

but is statistically significant. 

Figure 25 shows the relationship between the data set size used and the accuracy for 

different distance functions. The data set size is the depended variable, and the accuracy is the 

independent variable. The data set size varies between 200 and 1000, in increments of 50. The size 

of the antibody population is fixed at 1000 for this test. This chart also shows the Manhattan 

distance giving the highest accuracy, with a maximum of 95.99% accuracy. 

A confidence interval was calculated using data from Figure 25 for the difference in the 

accuracy between the Euclidian distance and the Manhattan distance functions. The difference was 

calculated by subtracting the accuracy of the algorithm using the Manhattan distance and the 

accuracy of the algorithm using the Euclidian distance, this made the difference positive. With  



87 

 

 

Figure 25. Data Set Size and Accuracy for Different Distance Functions 

 

these values a confidence interval was calculated at the 95% confidence level. The average 

difference in the accuracy was calculated to be between 1.45 and 0.86 percentage points. This 

shows that using the Manhattan distance gives higher prediction accuracy, and that it is not due to 

chance but is statistically significant. 

Figure 26 shows the relationship between the data set size and the F-measure achieved by 

the classifier. The F-measure is a measurement of the performance of a classifier, but is calculated 

on a class-by-class basis, as opposed to accuracy and error rate, which are calculated for all classes. 

F-measure is the weighted average of precision and recall, and has a range of [0, 1], with 1 being 

the best performance. The dependent variable is the size of the data set used to train the classifier, 

the independent variable is the F-measure. The size of the population of antibodies is fixed at 1000. 

The Chebyshev and 
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Figure 26. Data Set Size and F-Measure 

 

Manhattan distances are the highest performing distance measures tested across all classes of flows 

in the data set. 

The modifications to the algorithm tested in this section have shown that is indeed possible 

to bring the performance of the AIS-inspired algorithm closer to that of the SVM algorithm. The 

optimized algorithm is also functionally identical to the original, unoptimized algorithm. The 

performance of the optimized algorithm is especially good as the number of features in the data 

set rises and as the number of dimensions in the population of antibodies rises, seemingly dealing 

with the curse of dimensionality easily. Furthermore, the results show that the Euclidian distance 
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measure does not give the highest accuracy for this application. It has been shown that the 

Manhattan distance measure gives better classification performance. 

In this chapter it is shown how the changes and optimizations applied to the original 

algorithm do not functionally change the original algorithm, while making its execution 50-60% 

faster. We also show that the classification accuracy of the Euclidian distance is superseded by the 

Manhattan distance for this application, giving 1-2% higher accuracy, making the accuracy of the 

algorithm comparable to that of a Naïve Bayes classifier in previous research that uses the same 

data set. 

 

Comparison to Previous Work 

 

This work has shown that is indeed possible to optimize the performance of an AIS-inspired 

algorithm. It is also shown that the algorithm is functionally identical to the previous unoptimized 

version. Also, the most common distance measure used, the Euclidian distance measure, does not 

give the best performance for this problem. Lastly, it can be seen that the Manhattan distance 

measure gives better classification performance, however, I believe that this is problem dependent 

and there is no good way to predict which distance measure will maximize the accuracy achieved 

by the algorithm. All distance measures must be tested to find the best one. 

Although there has been previous work in the application of non-Euclidian distance 

measures to AIS algorithms [102], it is only applicable to the AIRS algorithm. The present research 

tests several distance measures with a positive selection algorithm. 

Support Vector Machine classifiers are usually trained using quadratic optimization 

techniques. There has been much research done into ways to do this on large data sets. For 

example, sequential minimal optimization and feasible direction decomposition, are algorithms 
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designed to train SVM classifiers on large data sets, in the order of 105 and 106 examples [103].  

For even bigger data sets, the Hadoop framework and Map-Reduce algorithms have been adapted 

to solve the optimization problem. Lastly, stochastic gradient descent has also been used to train 

SVMs on very large data sets. These approaches do not redefine the problem and still frame it as 

an optimization problem. 

Our proposed approach uses fewer parameters than other natural computing algorithms and 

does not incur the training costs associated with discovering such parameters. For example, the 

performance of the genetic algorithms depends highly on the mutation and cross-over operations 

and parameters. Similarly, the performance of artificial neural network, deep learning and extreme 

machine learning based approaches depends highly on the number of hidden layers, the number of 

neurons in each layer and the employed activation function. Also, the performance of SVM is 

highly dependent of the Kernel function used and its parameters. In this paper, we propose an 

optimized AIS algorithm that needs few parameters and produces results comparable to these 

produced by the optimal parameters of the aforementioned methods. Therefore, the proposed 

approach eliminates all the overhead and subjectivity involved in the selection of the parameters 

in other biologically inspired approaches. 

Furthermore, Artificial Immune System algorithms are able to operate in highly distributed 

systems and can be easily adapted to run on networked computers. AIS algorithms are capable of 

learning new patterns, remember previously learned patterns, and do pattern recognition in 

networked systems. At the same time, their performance degrades gracefully, in the same way as 

Artificial Neural Networks. In past research, AIS algorithms have been used to detect malicious 

activity in computer networks [8]. Because of this research and the capabilities of AIS classifiers 
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we are encouraged to explore their performance on the task of network flow classification. 

Research has also shown that positive selection AIS algorithms can perform very well in certain 

problems compared to negative selection in problems that require a comprehensive data set of 

negative examples. Positive selection is also being simpler to code and faster to train. For this 

reason, the algorithm presented in this paper is a positive selection algorithm. 

The original algorithm described here is designed to be simple and fast so that it will work 

well in resource-constrained systems. Because of our previous findings, we have been motivated 

to develop optimizations for the algorithm, to make it competitive with other Machine Learning 

approaches while depending on lesser configurable parameters. 

When testing the optimizations made to the algorithm, a speedup of about 10x-30x was 

achieved in the training algorithm. A speedup of around 2x was observed in the classification 

portion of the algorithm. No significant differences where observed in the accuracy of the 

optimized and unoptimized algorithms. When testing different distance functions, it was observed 

that Manhattan distance was 1% to 2% more accurate for the data set used. 

The training algorithm used for the classifier does not frame the problem as an optimization 

problem at all, choosing instead to make certain assumptions about the data. The first assumption 

is that the training set contains points that are good approximations for the best placement of the 

hyper-sphere centers. The second assumption is that by setting the radius of each hyper-sphere so 

that it will not misclassify any points in the training set, a good voting ensemble classifier can be 

built. During the literature review, no other classifiers have been found that follow this path. 

However, there have been a few that have some of these elements. These assumptions have allowed 

the classifier to be easily optimized, and for it to have certain qualities that the SVM classifier 
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lacks. Furthermore, there has not been much research into the optimization of the running times of 

ensemble classifiers. 

 

Optimizing the AIS Negative Selection Algorithm 

 

The Negative Selection algorithm is the first algorithm to be derived from the study of the 

natural immune system [8]. The Negative Selection algorithm has been studied widely since it was 

first proposed and has been applied to many different problems. It is often applied to intrusion 

detection tasks and security-related tasks. The ability of the Negative Selection algorithm to model 

a class boundary using only samples from one class can be especially useful in certain types of 

problems. A description of the algorithm is given in the second section of chapter 3 and a pseudo 

code listing for it is given in Figure 5. The work described in this section first appears in [104]. 

In an early application of Negative Selection, Kim and Bentley [27-30] used the algorithm 

to detect malicious network connections. They found that the algorithm needed an excessive 

amount of time to create a set of antibodies that was big enough to achieve the necessary accuracy. 

Specifically, the algorithm would need to run for 1429 years to achieve 80% accuracy on a sample 

of network data that was only 20 minutes long. To achieve that accuracy 6×108 detectors would 

be needed.  

The research presented aims to create an optimized version of the Negative Selection 

Algorithm, both in the training and classification phases. The optimization described here is 

applicable on a wide variety of data types and applications. Furthermore the optimized algorithm 

is functionally the same as the unoptimized version of the Negative Selection Algorithm. This is 

proven here by showing that the accuracy of the optimized algorithm is not higher or lower than 
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the unoptimized algorithm. The algorithms are compared using three claims and using four 

experiments. 

As described in previous sections, the Negative Selection algorithm relies on a population 

of simple classifiers to perform classification. The classifiers are known as “antibodies” and can 

be implemented in many different ways. However, all antibodies must return a Boolean value, they 

either “match” or “don’t match” a sample to which they are compared.  

Using the concept of affinity, hyper-sphere antibodies can be defined. These antibodies are 

made of two components: a center point defined by a set of coordinates, and a radius that is defined 

by a scalar value. A hyper-sphere antibody “matches” a sample if the sample falls within the radius 

defined by the antibody. The radius can be defined by a distance function used to describe the 

affinity of the antibody. This type of detector works only in feature spaces that contain continuous 

(real-valued) features. The most common distance measure used in Euclidian distance. A more 

thorough description of antibody types can be found in the second section of chapter 3  

 

Description of the Optimization 

 

This section gives a general description of the optimization scheme along with 

implementation details. 

In the pseudo code found in Figure 4, the function matches() is used to compare a new 

detector with every sample in the data set. This function is used heavily to find detectors that do 

not match any samples in the subset of samples in a data set not in the “self” class. This is because 

the detector is applied one-by-one to each sample in the training set. 

Instead of comparing a new detector with the set of self samples individually, in the 

optimized training algorithm the comparison proceeds feature-by-feature. This process is best 
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explained as a “filtering” process that is applied on each feature in the data set individually. The 

filtering process discards the self samples that do not match the new detector in the current feature 

being processed. The set of self samples becomes smaller and smaller as the filtering proceeds, 

speeding up the comparison as the features are processed. If there are any self samples remaining 

in the set after all of the features are processed, the proposed detector matches one or more self 

samples, and is therefore discarded (as with normal Negative Selection). If there are no self 

samples left in the set at any point in the processing, the proposed detector does not match any self 

samples, and can therefore be added to the set of detectors.  

As in Figure 4, in the pseudo code found in Figure 6 the function matches() is used to 

compare the set of detectors with the sample to be classified. This function is used to find detectors 

that match the sample to be classified. It works by comparing each detector in the set of detectors 

to the sample to be classified individually. 

In the same way as the training algorithm, when classifying a sample into self or non-self, 

the comparison between the sample and the set of detectors proceeds feature-by-feature. The set 

of detectors that could match the self-sample becomes smaller and smaller as more and more 

detectors are “filtered” from the set. If the set of detectors is emptied during this filtering process, 

then the sample does not belong to the self class. If there are detectors remaining in the set after 

all of the features are processed, then the sample belongs to the non-self class. 

Figure 16 shows primary filtering happening in two dimensions with two hyper-sphere 

detectors. It can be seen that the point to be classified falls within the radius of hyper-sphere B. 

Filtering based on the feature X, both hyper-spheres would be kept in the set, since the example 
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falls within both in that dimension. Filtering based on the Y dimension would filter out the A 

detector, since the example does not fall within the radius of the A detector in that dimension. 

The Negative Selection algorithm implemented to test the optimization proposed in this 

research is implemented using hyper-sphere detectors. The detector radius is defined using 

Euclidian distance. Each detector contains a center point, defined as a set of coordinates in 

Euclidian space, as well as a radius. A detector matches a sample only if the sample falls within 

the radius of the detector. Each detector has a fixed radius, given to the training algorithm as a 

parameter. The only other parameter needed by the training algorithm is the size of the detector set 

to be generated. The range of the values in each feature of the data set was normalized to the range 

[0,1]. This is done to simplify the code, but is not necessary and the optimization can be 

implemented without this step. 

The training algorithm uses a two-stage filtering process to speed up the comparison 

between the new detector and the set of samples containing the self class. The first stage compares 

each feature of the sample to the allowed range of the detector in that feature. The allowed range 

is calculated by adding and subtracting the radius from the coordinate of the center point in that 

dimension. If the sample does not fall within the range calculated, it is removed from the set. In 

this manner, the set of samples that could be contained by a detector is iteratively reduced in size.  

The secondary filtering step is necessary in this case because of the “roundness” of the hyper-

sphere detectors. The primary filtering process could leave some samples in the set if they fall 

within the hyper-cube that contains the hyper-sphere that is the detector. Secondary filtering then 

proceeds as normally done by the Negative Selection algorithm, by iteratively comparing the 

remaining sample set with the detector. After primary and secondary filtering are completed, the 
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samples remaining in the set are the ones that fall within the detector radius. If the set is empty, 

then the detector can be added to the set of detectors, since it does not match any samples in the 

self set. If at any point in the primary filtering process the set of samples becomes empty, then the 

algorithm is able to add the detector immediately, since it is known that the detector does not match 

any sample in the self set without having to perform secondary filtering. The pseudo code for the 

optimized Negative Selection training algorithm can be found in Figure 27. In this pseudo code 

listing the primary filter section contains while loop that is filtering out all detectors that do not 

meet the criteria. This filter applies the logic described in the previous sections. 

In the pseudo code, p[“center”] defines the center point, p[“radius”] defines the radius, and 

p[“class”] defines the class that the hypersphere belongs to, all attributes of hypersphere p. In the 

same way, i[“data”] defines the center point, and i[“class”] defines the class that the point belongs 

to, all attributes of point i. 

When using a detector in the pseudo code, d[“center”] references the vector that contains 

the center point of the detector d, and d[“center”][0] references the first dimension of that vector. 

Similarly, d[“radius”] references the scalar value that defines the radius of the detector. When using 

a data point in the training set in the pseudo code, s[“class”] references the category that the sample 

s belongs to. Also, the vector that defines the sample s is stored in s[“data”], with s[“data”][0] 

referencing the first dimension of the data vector of s. 

The filtering process is very similar in the classification algorithm as it is in the training 

algorithm, only it is done in reverse. Instead of comparing the set of self samples with one detector, 

the filtering process compares a set of detectors with one sample. The set of detectors is iteratively 

reduced, and the remaining detectors are subjected to secondary filtering. If a detector remains in 
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Figure 27. Pseudo Code for the Optimized Negative Selection Training Algorithm 

 

Definitions: 

training_set: a list of the training data points, each with an attached class label 

detectors: the set of detectors to be created 

population_size: the size of the desired population of detectors 

self_class_label: the label of the class designated as “self” 

normalize(): a function to normalize the data set 

generate_random_antibody(): a function to generate a random antibody 

distance(): a function for calculating the Euclidian distance between points 

nd: total number of dimensions in the data set 

 

Initialization: 

training set = normalize(training_set) 

detectors = {} 

Training Algorithm: 

WHILE | detectors | < population_size: 

self_class = { s | s ∈ training_set AND s[“class”] = self_class_label } 

 na = generate_random_antibody() 

  

 #primary filtering 

 d = 0 

 WHILE d < nd 

  self_class = { s | s ∈ self_class  

  AND na[“center”][d] > (s[“data”][d] - na[“radius”] )  

  AND s[“data”][d] < (na[“center”][d] + na[“radius”] )} 

      d = d + 1 

 ENDWHILE 

 

 #early decision 

        IF | self_class | = 0 

  detectors = detectors ∪ na 

 #secondary filtering 

 ELSE 

  flagged = FALSE 

  FOREACH { s | s ∈ self_class } 

  IF distance(na[“center”], s[“data”]) < na[“radius”] 

    flagged = TRUE 

   ENDIF 

  ENDFOREACH 

             IF flagged = FALSE:     

   detectors = detectors ∪ na 

  ENDIF 

 ENDIF 

ENDWHILE 

© 2016 IEEE 
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the set after both primary and secondary filtering are complete, then the sample is classified as 

non-self, since it is “matched” by one or more detectors, otherwise it is classified as self. The 

pseudo code for the optimized Negative Selection classification algorithm can be found in Figure 

28. In this pseudo code listing the primary filter section contains while loop that is filtering out all 

detectors that do not meet the criteria. This filter applies the logic described in the previous 

sections.  

Figure 28. Pseudo Code for the Optimized Negative Selection Classification Algorithm 

 

detectors: set of the detectors generated by the training algorithm 

x: the sample to be classified 

self_class_label: label of the class designated as “self” 

non_self_class_label: label of the class designated as “non-self” 

distance(): a function for calculating the Euclidian distance between points 

nd: total number of dimensions in the data set 

 

Classification Algorithm: 

#primary filtering 

d = 0 

WHILE d < nd 

detectors = { a | a ∈ detectors  

AND x[“data”] [d] > (a[“point”][d] - a[“radius”])  

AND x[“data”] [d] < (a[“point”][d] + a[“radius”]) } 

     d = d + 1 

ENDWHILE 

 

#secondary filtering 

FOREACH {a | a ∈ detectors} 

 d = distance(x[“center”], a[“center”]) 

     IF d <= a[“radius”] 

  return non_self_class_label 

 ENDIF 

ENDFOREACH 

return self_class_label 
© 2016 IEEE 
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In both of the optimized training and classification algorithms an “early decision” can be made. 

This happens when the set of self samples is emptied, in the training algorithm, or when the set 

of detectors is emptied, in the classification algorithm. 

 

Model and Experimental Setup 

 

This section contains details about the way in which the optimization was implemented, 

along with the data set used and the claims being tested. 

To test the optimization, the Breast Cancer Wisconsin (Diagnostic) Dataset was chosen 

from the UCI repository [19]. This data set was chosen because it is limited to two classes, which 

fits with the AIS paradigm. To test the algorithm, some preprocessing was done to the data set. The 

class label of each sample was placed in the first column of the data set. All samples with missing 

values were removed from the data set, making the data set smaller but simplifying the algorithm. 

All duplicate rows were removed from the data set as well. After this was done, the data set 

contained 683 labeled samples, each with 9 real-valued features. The class labels found in this data 

set are “malignant” with 239 samples found in the data set, and “benign” with 444 samples found 

in the data set. 

The model was validated using 10-fold cross validation. To do this, the dataset used was 

split evenly into 10 subsets. From these 10 subsets, training, validation, and testing sets are created. 

The training set created used 80% of the samples, the validation 10%, and the testing set 10% of 

the data. Stratification was also used, which is a technique used to make sure that each of the 10 

subsets is created so that it contains the same proportion of each class in the data set. Through this 

process, it is possible to create 10 unique testing sets, 10 unique validation sets, and 10 unique 
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training sets. By cycling through these, the experiments are performed 10 times and the results are 

averaged.  

Since the algorithm requires one parameter, one subset is set aside in every test run to 

determine the best values for these parameters. To accomplish this, a grid search is performed on 

the validation set, with the objective of finding the value for the parameter which maximizes the 

accuracy of the algorithm. The parameter is the radius of the hyper-spheres. The radius is varied 

from 0.01 to 0.99 in 0.01 increments  

Four experiments were performed with the original Negative Selection algorithm and the 

optimized version of the Negative Selection algorithm. The results of the experiments are detailed 

in the next section. The experiments are designed to demonstrate three claims that are made about 

the optimized Negative Selection algorithm. The claims deal with the execution time, classification 

time, and classification performance of the algorithm. Our claims about the algorithm are these: 

1. The optimized training algorithm is faster than the unoptimized training algorithm. 

2. The optimized classification algorithm is faster than the unoptimized classification 

algorithm. 

3. The optimization does not affect the accuracy of the algorithm, being functionally the 

same. 

To make the comparisons between the optimized and unoptimized algorithms as unbiased 

as possible, two methods were used: when testing the training algorithm, both versions of the 

algorithm were given the same parameters and the exact same data set, with the same set of sub 

data sets (due to the 10-fold cross validation). When testing the classification algorithm, the exact 

same set of detectors is provided to both versions of the algorithm. This was done so that both 
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versions of the algorithm could be compared without worrying about randomness affecting the 

results.  

When comparing the accuracy of the optimized and unoptimized algorithms, the accuracy 

is calculated as follows: 

          Accuracy = ( TP + TN ) / ( TP + TN + FP + FN ) ) (1) 

were TP is the number of true positive predictions, TN is the number of true negative 

predictions, FP is the number of false positive predictions, and FN is the number of false negative 

predictions. 

All experiments were performed on an Intel i5-based computer running at 1.80 GHz. The 

computer has 4 GB of memory, and the operating system used is 64-bit Windows 8.1. Both the 

optimized and unoptimized algorithms were coded in Python 3.4.  

 

Results 

 

This section shows the results of the experiments and demonstrates the validity of the 

claims made in the previous section. To simplify the tests, the detector radius was set to 0.5 for the 

experiments graphed in Figures 29, 30, and 31. This radius was found using a grid search, which 

was used to find the detector radius that maximized the accuracy of the algorithm. The grid search 

was performed using the validation set.  

The relationship between the training time and the data set size is shown in Figure 29. The 

detector set size is held constant at 1000, and the data set size was increased from 100 to 500. It 

can be seen that the optimized training algorithm remains linear on the number of samples in the 

data set. The time is measured in seconds.  
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A confidence interval was calculated using data from Figure 29 for the difference in the 

average time taken to finish by both algorithms. To do this, 10 data points were taken from the last 

test graphed in the figure. For this test, the detector set size was 1000, and the data set size was 

500. With these values a confidence interval was calculated at the 95% confidence level. The 

difference in the average time taken to complete training was calculated to be between 1.3 and 

1.01 seconds, with the optimized algorithm being faster. This helps to show that claim 1 is true. 

The relationship between the training time and the detector set size is shown in Figure 30. 

The data set size is held constant at 500, and the detector set size was increased from 100 to 1000. 

The optimized training algorithm is also linear with the number of detectors in the set. It is faster 

than the unoptimized training algorithm.  

A confidence interval was calculated using data from Figure 30 for the difference in the 

average time taken to finish by both algorithms. To do this, 10 data points were taken from the last 

test graphed in the figure. For this test, the detector set size was 1000, and the data set size was 

500. With these values a confidence interval was calculated at the 95% confidence level. The 

difference in the average time taken to complete was calculated to be between 1.07 and 1.04 

seconds, with the optimized algorithm being faster. This also helps to demonstrate the validity of 

claim 1. 

The relationship between the size of the set of detectors and the classification time is shown 

in Figure 31. The classification time is the time taken to classify one sample. The size of the 

detector set was increased from 100 to 1000. 

The confidence interval was calculated using data from Figure 31 for the difference in the 

average time taken to finish by both algorithms. To do this, 10 data points were taken from the last  
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Figure 29. Data Set Size and Training Time for Optimized Negative Selection 

 

 

Figure 30. Antibody Population Size and Training Time for Optimized Negative Selection 
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test graphed in the figure. For this test, the detector set size was 1000. 

With these values a confidence interval was calculated at the 95% confidence level. The 

difference in the average time taken to complete was calculated to be between 0.0033 and 0.00033, 

with the optimized algorithm being faster. The results of this experiment demonstrate that claim 2 

is valid. 

The fourth experiment is done on the training and classification algorithms in tandem, 

proving that the combination of the optimized training and classification algorithms does not 

negatively affect the accuracy of the algorithm. Figure 32 shows the relationship between the data 

set size and the accuracy achieved by the algorithm. As mentioned, the optimized and unoptimized 

versions of the algorithm use the exact same data set to create the set of detectors. The size of the 

set of detectors generated is held constant at 1000. Although it is not easily seen, the accuracy 

achieved by the optimized algorithm does not match the accuracy of the unoptimized algorithm 

exactly. This is due to the fact that the Negative Selection algorithm uses randomness in the training 

process. 

A t-test was performed to compare average accuracy achieved by both the optimized and 

unoptimized algorithms. The samples were paired according to the data set size used, using the 

same data that is graphed in Figure 9. The confidence level used was 95%. The null hypothesis 

could not be rejected, meaning that the analysis did not provide evidence against claim 3. 

Additionally, the Pearson correlation between the paired accuracies was calculated to be 0.996, a 

value that shows that the accuracies of the unoptimized and optimized versions of the algorithm 

are very closely related. 
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Figure 31. Population Size and Classification Time for Optimized Negative Selection 

 

 

Figure 32. Data Set Size and Accuracy for Optimized Negative Selection 
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Comparison to Previous Work 

 

The optimization described in this section is very similar to the optimization of the 

classification algorithm in the previous section. However, the optimization described here applies 

to the class of algorithms known as Negative Selection. The optimization described in the previous 

section was specifically designed for that algorithm and only worked in the classification portion 

of the algorithm. This optimization works in both the classification and training portions of the 

Negative Selection algorithms. 

In the literature review performed for this research, no other approach similar to this one 

was found. A lot of the work in the area of optimizing the Negative Selection algorithm was only 

applicable to r-contiguous and r-chunk detectors.  
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CHAPTER VI  

 

THEORETICAL ANALYSIS OF THE ALGORITHM 

 

This chapters looks at the algorithm from a theoretical perspective. It includes both an 

analysis of the VC-dimensionality achieved by the classification algorithm as well as the big O 

complexity of the classification and training algorithms. The analysis described in this section only 

applied to the algorithm described in the first two sections of chapter 5 and does not include the 

Negative Selection algorithm used in the third section of chapter 5. 

 

VC-Theory 

 

Vapnik-Chervonenkis theory was developed by Vladimir Vapnik and Alexey Chervonenkis 

between 1960 and 1990. The theory aims to explain learning from a rigorous mathematical and 

statistical point of view. Through this theory, many important proofs can be constructed concerning 

the learnability of a concept, the descriptive power of a classifier, and the generalization ability of 

a learning process. [106] 

Through the use of Vapnik-Chervonenkis theory it is possible to quantify the descriptive 

power of a model. This is done by measuring the VC-dimensionality of the functions that define 

the model with the concept of a shattering set. Through the use of VC-dimensionality, it is also 

possible to provide a bound on the generalization error of an algorithm. It is applied to the current 

problem to explain the ability of the algorithm developed in this work to describe class boundaries, 

as well as to make it easier to derive bounds. 
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VC-Dimensionality 

 

VC-dimensionality measures the descriptive “capacity” of a hypothesis space, where the 

hypothesis space is defined by the functions that make up a classifier. When applied to machine 

learning, the VC-dimensionality of a classifier shows how expressive the classifier can be. For 

example, a high-degree polynomial has a high capacity, because it is capable of separating a more 

complicated set of points into two regions of space. A line has a low capacity because it is unable 

to separate a complicated set of points into two distinct regions. This can be seen in the graph of 

the XOR function in Figure 14, since it is impossible to find a line to separate both classes. The 

VC-dimension of a classifier is defined to be the cardinality of the largest set of points that the 

classifier can “shatter.” 

The notion of “shattering” is now defined more formally. Given a set D with the structure: 

 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁)} (11) 

the size of D being: 

 |𝐷| = 𝑁 (12) 

With each vector xi being defined in the real numbers with d dimensions: 

 𝑋 =  ℝ𝑑 (13) 

and each yi being a member of the set Y: 

 𝑦𝑖  ∈ 𝑌  (14) 

Which is equal to: 

 𝑌 =  {1, −1} (15) 

From the above definitions it can be seen that: 

 (𝑥𝑖, 𝑦𝑖) ∈ 𝑋 × {−1, 1} (16) 
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The elements in Y are called the “label” of the vector xi. The number of possible class 

assignments for the vectors is: 

 |𝑌||𝐷| =  2𝑁 (17) 

Therefore, it can be seen that with a binary classification problem and a data set of size N, 

there are a possible 2N learning problems, because there are 2N possible ways to assign the class 

labels in set Y to the vectors in D.  

A hypothesis space is denoted in this way: 

 𝐻 (18) 

A hypothesis space is useful in the context of this research because it helps us define the 

capacity of a classifier. This is because a classifier can be thought of as a function h, defined as: 

 𝑦 = ℎ(𝑥) (19) 

where, y ∈ Y and x ∈ ℝ𝑑, and h: X → Y. The function h maps every member of the vector space 

X to the class labels in set Y. 

A data set is said to be “shattered” by a hypothesis space H if and only if for every subset 

of the data set, there is a hypothesis h ∈ H that separates the subset without any errors into regions 

containing only points from one of the labels. The VC-dimension of a hypothesis space H is 

denoted: 

 VCdim(H) (20) 

where VCdim may be equal to any natural number, up to infinity.  

More formally: the VC dimension of a hypothesis space H defined over instance space D 

is the size of the largest finite subset of D shattered by H. If arbitrarily large finite sets of D can be 

shattered by H, then VC dimensionality of H is infinite. 
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Stated in a different way, the VC-dimensionality of a hypothesis space is defined to be the 

cardinality of the largest data set that can be shattered by the hypothesis space, including every 

subset of the data set. If the classifier is able to express hypotheses that are able to classify all 

possible assignments of classes to samples, then the VC-dimensionality of the classifier is equal 

to infinity. When calculating the VC-dimensionality of a class of functions, it is sufficient that one 

set of points that can be shattered is found; it is not necessary to prove that the class of functions 

has the capacity to shatter every possible set of points of a certain size. 

As mentioned before, the VC-dimension is a property of a set of functions, which denote 

the behavior of a classifier. At the same time the functions also define a hypothesis space, which 

define the hypotheses that the classifier is capable of implementing. The VC-dimension of a 

classifier is a measurement of the expressive capacity of the classifier that implements the 

hypothesis space, which is itself a set of functions. The VC-dimension of a hypothesis space is not 

related to the size of the hypothesis space, but is related to the number of distinct samples of a data 

set that can be correctly classified by a hypothesis in the hypothesis space implemented by the 

classifier.  

As an example, a data set of three points in two dimensions, with two possible classes can 

have 8 possible class assignments: 

 |𝑋|  =  3 (21) 

 |𝑌|  =  2 (22) 

the number of possible class assignments is: 

 23  =  8 (23) 
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If a linear classifier is used, such as an SVM, then a classifier can be found that will separate 

the data set perfectly. In terms of VC theory, it is said that the class of linear classifiers “shatters” 

the data set, because for all 8 possible class assignments to the 3 points in the data set, classifier 

can be found that will separate them correctly. It is important to understand that the set of hyper-

plane classifiers is able to shatter a set of size three because there is at least one arrangement of 

the points that can be shattered. It is not necessary for the class of functions to shatter all possible 

arrangements of points of a certain size for the VC dimension to be equal to the size of the set in 

question. 

  

The VC-Dimension of Hyper-Sphere Classifiers 

 

To lay down a foundation that more complicated proofs can be built on, a proof for the VC-

dimension of a single hyper-sphere classifier is given here. A hyper-sphere is defined like this: 

 𝑆𝑛 = { 𝑥 ∈ ℝ𝑛, 𝑐 ∈ ℝ𝑛 | 𝑑(𝑐, 𝑥) = 𝑟 } (24) 

 

where n is the number of dimensions that the hyper-sphere is defined in, c is the center of the 

hyper-sphere and d is the distance function being used. Given that d is a distance metric, it can 

only be a positive real number.  The distance function need not be the Euclidian distance function. 

 

The VC-Dimensionality of One Hyper-Sphere Classifiers 

 

To accomplish classification using a hyper-sphere, a function must be defined that maps 

members of X to members of Y, as defined above. Therefore, a formalization of a hyper-sphere 

classifier is given by defining a function that can be used as a classifier: 
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 𝑓(𝑥) ={ 1   𝑖𝑓 𝑑(𝑐, 𝑥) ≤ 𝑟   
−1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 (25) 

A single hyper-sphere classifier is a simple classifier that defines every point within its 

radius to be of class 1, and everything outside of it to be of class -1. A class of functions is defined: 

 ohi∈OHSC       (for “one hyper-sphere classifiers”) (26) 

where each function ohi within OHSC is defined by two parameters: 

 ohi = [ci, ri] (27) 

The center of the hyper-sphere is the vector c, and the radius r is a scalar. Both defined to be: 

 c = ℝ𝑑 (28) 

 r = ℝ (29) 

and the center vector ci has d dimensions. 

For the first proof, it is useful to remind ourselves of Radon’s theorem. The theorem states 

that any set of d + 2 points in ℝ d can be divided into two disjoint sets whose convex hulls intersect. 

In other words, there always exists a way to partition a set of points so that the convex hulls of the 

subsets have at least one point in common. The convex hull of a set of points can be visualized as 

the set of points that correspond to a string stretched around the points (in two dimensions). 

The proof for Theorem 1 shows that sets of size d+2 cannot be shattered by hyperspheres 

by proving that the VC dimensionality of hyper-spheres is the same as the VC dimensionality of 

hyper-planes in the same number of dimensions. The proof can be better understood by visualizing 

a hyper-sphere with a radius equal to infinity. Such a hyper-sphere would behave in the same way 

as a hyper-plane. Theorem 1 is important because every other proof within this chapter depends 

on the VC-dimensionality of a single hyper-sphere. The second part of the proof relies on the fact 
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that half-spaces are proven to have a VC-dimensionality of d+1. The proof for Theorem 1 first 

appears in [107] which is an unpublished manuscript. To the best of our knowledge, there is no 

other publication describing the VC-dimensionality of hyper-spheres. 

 

Theorem 1: VC dimension of hyper-spheres in ℝ𝑑 is equal to d+1, where d is the number of 

dimensions of the hyper-sphere. Stated in another way, VCdim(OHSC) = d+1. 

 

Theorem 1 establishes for the VC-dimensionality of the class of functions OHSC. The 

proof is done in two parts. First, it is proven that a set of points of size d+1 can be shattered by the 

class OHSC, then it is proven that no set of points of size d+2 can be shattered by the class OHSC. 

This is enough to prove that the VC-dimensionality of the class of functions is equal to d+1, 

according to the definition of VC-dimensionality. Lemmas 1 and 2 below contain the two parts of 

the proof. 

 

Proof:  

Lemma 1: A set of d+1 points consisting of the unit vectors and the origin can be shattered by 

hyper-spheres of OHSC. Suppose A is a subset of the d+1 points. The center a0 of a hyper-sphere 

will be the sum of the vectors in A. For every unit vector in set A, its distance to the center a0 will 

be √|𝐴| − 1 and for every unit vector outside A, its distance to the center a0 will be  √|𝐴|  + 1 . 

The distance of the origin to the center is √|𝐴|. Thus it is easy to see that the radius can be chosen 

so that precisely the points in A are in the hyper-sphere. 

 

Lemma 2: No set of points of size d+2 can be shattered by class OHSC. Proceeding by 

contradiction. Suppose that there exists a set S with d + 2 points in it that can be shattered by a 
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hyper-sphere of d dimensions which is a member of OHSC. Applying Radon’s theorem, for any 

partition of set S into subsets A1 and A2, there exist hyper-spheres B1 and B2 such that S ∩ B1=A1 

and S ∩ B2 = A2. B1 and B2 may intersect, but assume without loss of generality that there is no 

point belonging to S in their intersection. Because no points in S are allowed to exist in the 

intersection of B1 and B2, it is easy to see then that there is a hyper plane with all of A1 on one side 

and all of A2 on the other. This implies that half-spaces are able to shatter the set S which is of size 

d + 2, which is a contradiction since all half spaces are proved to have VCdim of d+1. Therefore, 

no set of d+2 points can be shattered by a hyper-sphere. 

 

Corollary 1: All classifiers that implement a function of the class OHSC will have a VC-

dimensionality of d+1. This follows from the fact that the VC dimensionality of a single hyper-

sphere is equal to d+1. 

 

Corollary 1 shows that all one hyper-sphere classifiers will have a VC-dimensionality of 

d+1, no matter how they are parametrized. These results will be used for all of the remaining proofs 

in this chapter. 

The VC-Dimension of a Multi Hyper-Sphere Classifier 

 

A definition is now given for a classifier made up of multiple hyper-spheres. As before, 

each hyper-sphere is parametrized by: 

 hi = [ci, ri] (30) 

and the set of hyper-spheres that makes up the classifier is then defined to be: 

 HS = { h1, h2, h3, … , hM} (31) 

where the size of the set is: 
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 M = |HS|  (32) 

the classification function then becomes: 

 𝑓(𝑥) ={ 
1         𝑖𝑓 ∃ℎ { ℎ | ℎ ∈  𝐻𝑆, 𝑑(ℎ[𝑐], 𝑥) ≤ ℎ[𝑟] }         

−1                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          
 (33) 

Using the definition above, a class of functions, denoted as OHSC, where: 

 mhi ∈ MHSC       (for “multi hyper-sphere classifiers”) (34) 

where each function mhi within MHSC is defined by many pairs of parameters, each pair 

representing one hyper-sphere: 

 mhi = { [c1, r1]1, [c2, r2]2, [c3, r3]3,… , [cM, rM]M } (35) 

where each center ci is a vector, and each radius ri is a scalar, defined to be in: 

 ci = ℝ𝑑 (36) 

 ri = ℝ (37) 

and the center vector ci has d dimensions.  

The lower bound for the VC-dimensionality of the class of functions MHSC is now given 

through two corollaries. These corollaries are possible because it can easily be seen that the class 

of functions MHSC contains all possible one hyper-sphere classifiers, which are described in the 

class of functions OHSC. 

 

Corollary 2: The VC-dimensionality of the class of functions MHSC when M=1 is d+1, where d 

is the number of dimensions. Stated in another way, VCdim(MHSC) = d+1 when M=1. 

 

This corollary is easily seen from Theorem 1, since when M=1 the function in MHSC 

would be equivalent to a function in OHSC. 
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Corollary 3: The lowest possible value of the VC-dimensionality of the class of functions MHSC 

when M≥2 is d+1, where d is the number of dimensions. Stated in another way, VCdim(MHSC)≥d+1 

when M ≥ 2. 

 

Corollary 3 can easily be seen when visualizing the class of functions MHSC. The lowest 

possible VC dimensionality of the class is achieved when it equals the VC dimensionality of a 

single hyper-sphere (a classifier that is a member of OHSC). This happens when all hyper-spheres 

in the set HS have the same radius and the same center. The hyper-spheres behave as one and the 

classifier behaves as a member of OHSC even though it belongs to MHSC. It can also be seen that 

the VC dimensionality of the classifier can only increase if the radii and centers of the hyper-

spheres do not match, since a single hyper-sphere is the simplest class boundary representable by 

MHSC. 

 

Corollary 4: The upper bound of the VC-dimensionality of the class of function MHSC is M(d+1), 

where d is the number of dimensions and M is the number of hyper-spheres in the set. Stated in 

another way, VCdim(MHSC) ≤ M(d+1) if  M ∈ {1,2,3, …, N}. This applies when M is bounded by 

an integer N. 

 

As an example, suppose that there exists a set of points of size (M(d+1))+1 that can be 

shattered by a function in the class MHSC. This is not possible, since the maximum number of 

points that an individual hyper-sphere can shatter is d+1, meaning that the maximum number of 

points a set of hyper-spheres can shatter is M(d+1).  
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The maximum VC dimensionality of the class MHSC is achieved when each hyper-sphere 

in the set HS shatters d+1 points in the set. In aggregation, then, the set of hyper-spheres would 

shatter M(d+1) points. Since it is enough to show that there is an arrangement of points in a set of 

a certain size to achieve a certain VC dimensionality, it is easy to imagine a set of points on which 

it is possible to place M hyper-spheres, each hyper-sphere shattering a subset of points of size d+1, 

and achieve a VC dimensionality of M(d+1). Furthermore it is easy to see that it would be possible 

to place an additional point in the set so that the set of hyper-spheres would not be able to shatter 

the set, making a new set of size (M(d+1))+1. Therefore, the VC-dimensionality of the class of 

functions MHSC can never be more than M(d+1). 

 

Theorem 2: The VC dimensionality of MHSC is infinite if the number of hyper-spheres in the set 

is unbounded. More formally: VCdim(MHSC) = ∞ if M ∈ {1,2,3, …}. This theorem applies when 

M is unbounded. 

 

Proof: Proceeding by contradiction, assume that there does not exist a function in class MHSC 

that can shatter a set of points D. But a function can be easily built by centering a hyper-sphere on 

every element of D1, setting the radius to be equal to 0. Then proceed to set the radius of every 

hyper-sphere in the classifier so that each hyper-sphere does not contain any element in D-1. This 

is a contradiction, since such a function would be able to shatter the set D and is in MHSC. 

Therefore, the VC dimension of the class of functions MHSC is infinite because it is able to shatter 

a set of points of any size. 

 

Corollary 5: The VC-dimensionality of all multi hyper-sphere classifiers is equal to the VC-

dimensionality of the class of functions MHSC. It can also be seen that the maximum descriptive 
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power of a classifier that uses a function from the class MHSC grows along with the number of 

hyper-spheres. This follows from the fact that all multi hyper-sphere classifiers implement a 

function in the class MHSC. 

 

Theorem 2 is important because it shows the ability of the classifier to distinguish non-

linearly separable data sets, given enough hyper-spheres. This also means that the training set error 

will be 0%, if enough hyper-spheres are used in the classifier. However, the only way to guarantee 

that this will hold true is if the number of hyper-spheres used in the classifier is equal to the number 

of elements in the training set with class label equal to 1. In contrast, SVMs cannot separate non-

linearly separable data sets without giving a training error of more than 0%, when used without 

kernel functions.  

 

Bound for the Generalization Error of the Classifier 

 

Because the set of functions in MHSC has a VC-dimensionality equal to infinity, the bound 

on the generalization error of the classifier is based on the concept of the margin of the ensemble 

classifier. The case of function classes with infinite VC-dimensionality is specifically excluded 

from the work on generalization error bound by Vapnik [106], which is better known than the 

approach taken here. It is possible, however, to use the work of Breiman and Shapire et. al. [108] 

since they define the generalization error bound based only on the VC-dimensionality of the base 

classifiers used in an ensemble classifier. Specifically, it can be shown that their bound applies 

directly to the classifier described in this dissertation, because it is a voting ensemble classifier. 
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Introduction to Margins 

 

In this section an analysis is given for the expected classification performance of our 

algorithm. To accomplish this, the margin of an ensemble classifier and margin distributions are 

described and linked to the current work. The key insight in this section is the fact that the positive 

selection AIS algorithm that is being here examined is, in fact, an ensemble classifier, using many 

hyper-spheres to classify a test example. The hyper-spheres are in fact base classifiers. 

The way that the current classifier being analyzed is built has some similarity to bagging, 

which was first described in [109] by Breiman. Bagging is used to randomly create many data sets 

out of the original data set, and train one “base” classifier with each created data set. The outputs 

of the base classifiers are then combined to make a prediction. Bagging is used to diminish the 

variability of the data set and can often give good results. Subagging is a variation of bagging in 

which the randomly created datasets are smaller than the original data set.  

The work by Breiman in [110] is also useful to us, since it shows an analysis of the 

generalization error bound for random forests, which are a type of bagging classifier. The research 

links the generalization error of the ensemble classifier to the strength of individual trees and the 

correlation between them, two concepts that are defined thoroughly in the publication. This 

analysis is valuable because of the similarity of both AIS and random forest approaches, both being 

ensemble classifiers. There has also been a lot of research into the generalization error bound for 

the Adaboost algorithm, which uses the concept of boosting, itself is first described in [111]. The 

classification error bound of AdaBoost is first described in [108], where the concept of the margin 

is first introduced as an explanation of the success of ensemble classifiers.  
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The problem is couched in the following definitions, some of which are repeated from 

previous sections but are included for clarity. The definitions specific to this section are taken from 

Cai, Chang, and Peng’s work in [112]. 

Let X be the feature space, and let Y be the set of class labels. The data set D is made up 

of (x, y) pairs, with each x and y being members of X and Y respectively. Therefore, it can be seen 

that the set D is a subset of X x Y, and follows an unknown underlying distribution. 

A classifier is the product of a learning process, and is implemented as a mapping function 

from X → Y, which seeks to minimize the generalization error between the predictions of the 

classifier and the true underlying distribution, but accomplishes this through the minimization of 

the error on the training set. The classifier is written as: 

 ℎ(𝑥;  𝜃): 𝑋 →  𝑌 (38) 

where x stands for the input vector which is a member of X, θ is a vector of parameters, and the 

output is a member of Y. The classifiers can be thought of as existing within a classifier space 

which is defined to be Θ, which contains all possible classifiers, with θ ∈ Θ.  

The voting margin is a concept related to majority voting ensemble classifiers, such as the 

one described in this dissertation. The voting margin is defined as follows: 

𝑚𝑔(𝑥, 𝑦; 𝜃1, 𝜃2, … 𝜃𝑘) = 1/𝑘 (∑ 𝐼(ℎ(𝑥; 𝜃𝑖) = 𝑦)

𝑘

𝑖=1

 – max
𝑗≠𝑦; 𝑗∈𝑌

∑ 𝐼(ℎ(𝑥, 𝜃𝑖) =  𝑗)

𝑘

𝑖=1

 ) 

 (39) 

where there are k base classifiers in the ensemble classifier, each defined by a set of parameters θ, 

y is the correct class label of x, and I is the indicator function. The margin function mg has a range 

of [-1, 1]. The sign of the output of mg signifies the accuracy and confidence of the classification. 
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If the sign is negative the classification is incorrect, if it is positive it is correct. The absolute value 

of the margin function indicates the confidence that the classifier has about the prediction. 

According to Shepiro et. al. [113], with high probability, the bound on the generalization 

error of a voting classifier is: 

 𝑅𝑣 ≤  P̂r[𝑚𝑔(𝑥, 𝑦; 𝜃1, 𝜃2, … 𝜃𝑘)] + �̃� (√
𝑑

𝑚θ2) (40) 

where Rv refers to the risk of ensemble voting classifiers, which is the same as the generalization 

error of the classifiers. Here, P̂r[mg(x,y; 𝜃1, 𝜃2, … 𝜃𝑘)] is the probability distribution of the margin 

function, d is the VC- dimensionality of the base classifiers, and m is the size of the data set. This 

bound holds for any θ > 0. The proof for the above bound is found in [114]. 

By the margin explanation of ensemble methods, the best classifiers have a large margin. 

In the previous version of the algorithm, the margin was related to the value of the step_size 

parameter, which was the same for all base classifiers. In the new classifier, the margin is 

determined for each individual base classifiers, and is also not given as a parameter.  

Since the algorithm used in this work also uses the k-Nearest Neighbors classification 

algorithm, the generalization error bound is shown here for it as well. The bound for the 

generalization error of the k-Nearest Neighbor is first found in [115].  A stronger bound for the k-

NN algorithm is found in [116] and is reproduced here: 

 𝑅𝑘 ≤ 𝑅∗(1 +
𝛾

√𝑘
(1 + 𝑂(𝑘−1/6))) (41) 

where Rk is the risk of the k-NN classifier, which is the same as the generalization error of the 

classifier. Here, 𝛾 is a constant equal to 0.33994241 and the O notation refers to the limit as k→∞. 

R* is the risk obtained by an optimal decision strategy, known as the Bayes error. 



122 

 

 

Applying the Bound to the Classifier 

 

Since the algorithm proposed in this dissertation is also a voting classifier, the bound given 

in the previous section also applies to it. However, not every base classifier in the ensemble 

classifier is allowed to cast a vote. As seen in previous sections, only hyper-spheres that contain 

the example are used to make a prediction. Because of these differences, the margin function is 

similar, but not the same as in other ensemble classifiers. My work is an extension of [113]. 

The margin of the classifier is calculated for multi-class classification, but is otherwise the 

same as in previous research. Each hyper-sphere that contains the test point votes for its own class. 

Therefore, the margin function becomes: 

𝑚𝑔(𝑥, 𝑦; 𝜃1, 𝜃2, … 𝜃𝑘) = 1/𝑘 (∑ 𝐼(ℎ𝑠(𝑥; 𝜃𝑖) = 𝑦)

𝑘

𝑖=1

 – max
𝑗≠𝑦; 𝑗∈𝑌

∑ 𝐼(ℎ𝑠(𝑥, 𝜃𝑖) =  𝑗)

𝑘

𝑖=1

 ) 

 

  (42) 

 

where hs is a hyper-sphere in the set HS which defines the classification function, and each hyper-

sphere hsi is parametrized by a set of parameters 𝜃𝑖. As previously mentioned, the number of hyper-

spheres that cast a vote (k, above) is not necessarily equal to the size of the set HS, since only 

hyper-spheres that contain the test point are allowed to cast a vote.  

Described more informally, the margin function for the classifier under study is calculated 

by subtracting the number of incorrect votes made by the hyper-spheres from the number of correct 

votes made by the hyper-spheres. This is multiplied by one divided by the total number of votes 

cast, which causes the margin to be between [0, 1].  

Applying the margin function described above to the margin drawn by Shapiro is simple, 

now that the margin function is defined for it. The VC-dimension of the base classifier is (d+1), as 
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proven in previous sections. The data set size is easily determined, and the margin function is 

defined above. Therefore, the following bound on the generalization error of voting classifiers also 

holds for the current algorithm under study: 

Generalization Error ≤{𝑖𝑓∃ℎ{ℎ|ℎ ∈ 𝐻𝑆, 𝑑(ℎ[𝑐], 𝑥) ≤ ℎ[𝑟]} P̂r[𝑚𝑔(𝑥, 𝑦; 𝜃1, 𝜃2, … 𝜃𝑘)] + �̃�(√
𝑑

𝑚θ2)

                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    𝑅∗(1 +
𝛾

√𝑘
(1 + 𝑂(𝑘−1/6)))             

 

 (43) 

The bound is a combination of the k-NN and voting classifier bounds defined in the 

previous section. When the point to be classified is found within one of the hyper-spheres that 

makes up the classifier, then the voting classifier bound is applied. Otherwise, the k-NN bound is 

applied. 

The generalization error bound is graphed in Figure 33. The figure is created assuming that 

the margin distribution is maximized, meaning that the best margin possible margin of the 

classification surface between the classes in the data set has been found. This is not necessarily 

possible in real-world data sets, but it is assumed here to make a clear graph. The three lines in the 

figure correspond to three VC-dimensionalities, being set to 2, 4, and 6 respectively. The theta 

value is set to 1 for all three lines. The data set size is increased to show how the bound decreases, 

following the law of large numbers. 

Empirical Risk Minimization 

 

The principle of empirical risk minimization is a component of statistical learning theory, 

and it is used to give bounds on the accuracy of classifiers. The principle is used to elucidate the 

relationship between the training set error and generalization error of a classifier. It is covered here 

because it can be used to explain some of the qualities of the classifier. Although the definitions 
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Figure 33. Value of the Generalization Error Bound When Voting Classifier is Used 

 

used in this section are the same as used in previous sections, they will be restated for clarity. 

Given a set of labeled vectors of the form: 

 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2, … (𝑥𝑁 , 𝑦𝑁)} (44) 

where yi ∈ Y and xi ∈ ℝ𝑑. The goal of a classifier is to learn a classification function of the form: 

 𝑦 = ℎ(𝑥) (45) 

where, again, y ∈ Y and x ∈ ℝ𝑑, and h: X → Y. The function h is a member of a hypothesis space 

H, which contains all possible hypotheses. The data in the set D is assumed to be sampled 

independently and identically from the underlying joint probability distribution: 

 𝑃(𝑥, 𝑦) (46) 

over X and Y. The classifier should be built to correctly classify samples that where not seen in the 

data set. When a classifier performs classification on unseen examples, it is called generalization.  
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Within the hypothesis space of classifiers H, the best classifier is chosen by minimizing a 

function. The minimization is done using a loss function: 

 𝐿(𝑦, 𝑦’) (47) 

which measures the difference between two members of the set of class labels Y. The loss function 

most frequently used in the 0-1 loss function:  

 𝐿(𝑦, 𝑦’)  =  𝐼(𝑦 ≠ 𝑦’) (48) 

where I is the indicator function which is equal to one if the statement is true and 0 otherwise. The 

loss function is assumed to give a positive real number. 

The risk of a classifier f is essentially the probability that it will misclassify an unseen 

sample drawn from the joint probability distribution P(x,y). It is stated as the expected value of the 

loss function on the distribution P: 

 𝑅(𝑓)  =  𝐸[𝐿(𝑓(𝑥), 𝑦)] (49) 

and is calculated by the integral: 

 𝑅(𝑓) =  ∫ 𝐿(ℎ(𝑥), 𝑦) 𝑑𝑃(𝑥, 𝑦) (50) 

The empirical risk minimization principle states the best classifier f is one that minimizes 

the average risk on the training set. This is due to the law of large numbers, which states that the 

empirical risk will converge to the expected risk of the probability distribution as the number of 

samples in the data set goes to infinity [106].  

More formally, the best classifier f is found by solving this minimization problem: 

 𝑓∗ =  argmin
𝑓 ∈𝐹

𝑅(𝑓) (51) 
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However, the risk of a classifier cannot be calculated because the probability distribution 

P(x,y) is unknown, therefore the generalization error cannot be minimized. This shortcoming is 

dealt with by approximating the generalization error by using the empirical error: 

 𝑅𝑒𝑚𝑝(𝑓) =  1/𝑁 ∑ 𝐿(𝑓(𝑥𝑖), 𝑦𝑖)
𝑁
𝑖=1  (52) 

where xi and yi are members of X and Y, respectively. The minimization problem then becomes: 

 𝑓∗ =  argmin
𝑓 ∈𝐹

𝑅𝑒𝑚𝑝(𝑓) (53) 

More simply stated, a classifier can approximate the best classifier for the unknown 

probability distribution by finding the classifier that gives the lowest error rate on the training set. 

According to work by Feldman et. al [117], finding the best classifier for a given sample 

distribution in an NP-Hard problem. This result only holds when the learning algorithm is agnostic, 

meaning that it makes no assumptions about the probability distribution P(x,y). 

Because of the research referenced above, it is known that training a classifier to implement 

the function that minimizes the error on the training set is an NP-Hard problem. Therefore, 

approximation algorithms are used. In this dissertation, an ensemble classifier is presented, and an 

approximation algorithm is used for training it. The approximation algorithm specifically 

minimizes the error on the training set through techniques described in previous sections. 

 

Structural Risk Minimization 

 

Structural risk minimization is used in Machine Learning to deal with the problem of 

overfitting. Overfitting happens when a classifier trained on a data set makes prediction based on 

noise present in the data, instead of on the underlying relationship between X and Y. The main 

cause of overfitting is using a classifier that is too complex, in other words, having a classifier with 
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a too-high VC-dimension. A classifier that overfits the data set will have low empirical risk on the 

training data, but will have very poor generalization. This happens when the classifier starts to 

learn the characteristics of the training data. The structural risk minimization principle was first 

stated in [118]. 

Another way to understand SRM is to understand that a class of functions with a high VC-

dimension does not necessarily help the classifier that implements a function of the class to have 

high generalization performance, and may harm it by allowing the training process to fit the 

classifier to the nuances of the training data. However, a class of functions with a VC-

dimensionality that is too small will also harm the generalization ability of the classifier, since it 

may not allow the classifier to find a hypothesis that is descriptive enough to fit the probability 

distribution P(x,y). 

The SRM principle can be seen at work in Figure 34. The VC-dimensionality of the 

function is graphed along the horizontal axis of the figure, and the error rate along the vertical axis 

of the figure. As can be seen, the training error (empirical risk) can be made arbitrarily low by 

having a very descriptive class of functions. However, the generalization error (test error) does not 

follow the same relationship, only achieving a minimum and the rising again. It can be seen that 

there is an optimal VC-dimension at which a classifier is able to give the lowest generalization 

error. 

A related concept is Occam’s razor, a principle which was first stated by William of Occam 

in the Middle Ages. Occam’s razor purports that among competing explanations for phenomena, 

the one with the least number of assumptions is best and should be chosen. In this context, the 

classifier that should be chosen is the one with the lowest VC-dimensionality that is able to explain  
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Figure 34. Structural Risk Minimization 

 

the training data. As with other parameters, the optimal VC-dimensionality is often chosen through 

cross-validation. 

Because of the SRM principle, it is important to find a model with the right descriptive 

power for the data and application. As proven in the previous sections, the VC-dimensionality of 

the classifier described in this work is proportional to the number of hyper-spheres used in the 

classifier. The upper and lower bounds are given in a previous section. Because of this, the VC-

dimensionality of the multi hyper-sphere classifier can be scaled up and down by setting a 

parameter given to the training algorithm. This is useful in many situations, and is a simple way to 

only use as much descriptive power as necessary to solve a classification problem. Minimizing the 
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descriptive power of a classifier also means that unneeded processing is not performed, and the 

generalization error is minimized. 

 

Big O of the Algorithms 

 

This section deals with the analysis of the complexity of the optimized training and 

classification algorithms. The big O complexity of the optimized algorithm is given, as well as the 

expected classification performance of the algorithm. 

 

Analysis of the Training Algorithm 

 

The training algorithm is a one-shot algorithm that is dominated by the cost of creating and 

querying k-d trees. Like the original, unoptimized algorithm, the optimized algorithm is still a 

linear algorithm, although the constants are much smaller than the constants in the original 

algorithm. 

For the creation of the k-d trees, the data set must be divided into subsets, this is linear on 

the size of the training set: 

 N (54) 

where N is the size of the training set. 

The algorithm must first initialize one k-d tree for each class in the training set, therefore: 

 O( |Y| * e n log n ) (55) 

where Y is the set of classes present in the training set, e is the number of dimensions in the dataset, 

and n is the total number of samples in the training set that are not in the current class. 
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Once the k-d tree is built for each class, the algorithm queries one k-d tree one time for 

each antibody created in order to determine the correct radius for each antibody. The complexity 

is now dominated by the number of antibodies created: 

 O( p log n ) (56) 

where p is the number of antibodies required, and n is the number of samples in the training set 

not in the class of the antibody being generated. A query from one of the k-d trees created in the 

previous step requires O( log n ) time.  

Lastly, since the classification falls back to k-NN classification if there is no antibody that 

contains the test point, a k-d tree must be created that contains all of the antibody centers. This 

takes: 

 O( e p log p ) (57) 

where e is the number of dimensions in the dataset, and p is the total number of antibodies created. 

Putting these terms together, the training algorithm has a big O complexity of: 

 O( N + [ |Y| * ( e n log n ) ] + [ p log n ] + [ e p log p ] ) (58) 

which accounts for both the cost of creating the k-d trees and querying them, as well as creating 

the k-d tree for fallback classification. 

The new training algorithm works faster and more efficiently than the previous version of 

the algorithm. The previous training algorithm handled the comparison between a proposed 

antibody and all training samples naively, performing a comparison between each sample and the 

proposed antibody. This comparison required the calculation of the distance function, and was 

performed even when the sample was guaranteed to not fall into the proposed antibody. 
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Big O of the Optimized Classification Algorithm 

 

The classification algorithm is linear on the number of antibodies present in the population. 

The analysis is split up into two parts. The primary filtering process proceeds dimension by 

dimension, therefore: 

 O( d * |Aprimary| ) (59)  

where d is the number of dimensions of the antibody centers, and Aprimary is the set of antibodies 

present in the population before primary filtering begins. Furthermore, the size of the antibody 

population decreases with each dimension processed, meaning that the primary filtering takes less 

and less time as it executes. This is one of the reasons why it is much faster than the original 

algorithm, even though the filtering process is still linear, like the original algorithm. 

The secondary filtering process is linear on the number of antibodies remaining in the 

population after the primary filtering is done: 

 O( e * |Asecondary| ) (60) 

where e is the number of dimensions of the dataset, and Asecondary is the set of antibodies present in 

the population before secondary filtering begins and after primary filtering is done.  

Lastly, the assignment of the class to the test point is done in two ways. If the point is within 

one or more antibodies, then majority voting is performed, otherwise a query to a k-d tree is done. 

The time taken for final classification is described by the function h, parametrized by the set of 

antibodies Afinal, and the size of the original set of antibodies N. Final classification takes: 

ℎ(𝐴𝑓𝑖𝑛𝑎𝑙 , 𝑀) ={|𝐴𝑓𝑖𝑛𝑎𝑙| 𝑖𝑓 ∃𝑎 {𝑎|𝑎 ∈ 𝐴𝑓𝑖𝑛𝑎𝑙, 𝑑(𝑎[𝑐𝑒𝑛𝑡𝑒𝑟], 𝑥) ≤ 𝑎[𝑟𝑎𝑑𝑖𝑢𝑠]}

    log 𝑀                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
   (61) 
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where Afinal is the set of antibodies remaining in the set after secondary filtering is completed, and 

M is the size of the original antibody population. The distance function used in the classification 

is shown as d(), the sample to be classified is shown as x. The majority voting step of the algorithm 

is linear on the number of antibodies left in the population after the filtering steps are finished. 

Combining the three costs, the big O complexity of the optimized classification algorithm 

becomes: 

 O( [ d * |Aprimary| ] + e * |Asecondary| +  h(Afinal, M) )  (62) 

As expected, the algorithm is still linear on the number of antibodies in the population, and 

any speedup present is due to the efficient implementation of the filtering, which is usually faster 

than the previous implementation of the classification algorithm. However, the new classification 

algorithm will be faster than the previous classification algorithm in almost all cases. 

 

Memory Requirements of the Optimized Algorithm 

 

The memory requirements of the algorithm can be broken down into four categories: the 

memory required to store the data set, the memory required to store the antibody population, the 

memory required by the training algorithm to perform its calculations, and the memory required 

by the classification algorithm to make a prediction. In this section, the variable i is the number of 

bytes required to store an integer, k is the number of dimensions present in the data set, and f is the 

number of bytes required to store a floating point number 

The memory required to store the data set used during the training algorithm can be 

calculated as: 

 |S| * [ i + ( e * f ) ] + ( |S| * 2 * p ) (63) 
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where S is the data set. This amount of memory is required when the class label is encoded as an 

integer, which simplifies the calculation. Lastly, the amount of memory used for pointers is 

calculated, where each node in the tree contains two pointers and the amount of memory required 

to store a pointer is p. 

The antibody population memory requirement is very simple to calculate and depends on 

the size of the population and the number of dimensions of the data set: 

 ( |A| * [ i + ( e * f ) + f  ] )  (64) 

where A is the set of antibodies. A floating point number is used to store the radius of the hyper-

sphere. Again, this amount of memory is required only when the class label is encoded as an 

integer.  

The initialization step of the algorithm involves a simple normalization step, which can be 

done in-place, requiring no more memory than it takes to store the highest and lowest values of 

each variable in the data set: 

 e * 2f (65) 

where e is the number of dimensions of the data set. 

The training algorithm, which generates the population of antibodies requires no memory 

to run, since the memory it uses is already accounted for in the above analysis of the antibody 

population. 

The classification algorithm requires memory to perform the filtering steps. However, by 

encoding the structure of the k-d tree used for fallback classification on the array storing the 

population of antibodies, it is possible to avoid storing the antibody population twice. The amount 

of memory required to perform primary filtering never exceeds: 
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 |Aprimary| * [  i + ( e * f ) + f  ] (66) 

where Aprimary is the set of antibodies present in the population before primary filtering starts. This 

is due to the fact that the antibody population is copied every time primary filtering is performed 

on one dimension. However, the filtering seeks to remove portions of the population at each step, 

so the amount of memory required is always guaranteed to be equal or smaller than the original 

antibody population. 

Secondary filtering can be done in place, and does not require any memory, the copied 

antibody population is guaranteed to never exceed:  

 |Asecondary| * [ i + ( e * f ) + f  ] (67) 

where Asecondary is the set of antibodies present in the population before secondary filtering starts, 

but after primary filtering is done. The majority voting step only requires a set of counter variables, 

which keep track of the number of times each class appears in the population that remains after 

primary and secondary filtering is done: 

 |Y|* i (68) 

where Y is the set of classes present in the data set.  
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CHAPTER VII  

 

CONCLUSIONS AND FUTURE WORK 

 

This work has sought to improve Artificial Immune System algorithms in several ways. 

First, a new technique for doing multi-class classification with Artificial Immune Systems was 

developed and tested. Second, an optimization for this technique was developed and tested. Third, 

a similar optimization to the one applied to the multi-class classification algorithm was developed 

and tested for the binary-classification negative selection algorithm. Lastly, the second algorithm 

was analyzed and a bound for the accuracy that the algorithm is able to achieve was found. 

When developing the multi-class AIS algorithms it was attempted to improve the 

classification accuracy of the algorithm with kernel functions, and although the highest accuracy 

was achieved with a kernel function, it is believed that kernel functions do not significantly 

improve the algorithm. The algorithm is also directly compared with SVM and Naive Bayes 

classifiers. The algorithm's accuracy is similar to the accuracy of other algorithms tested. Even 

though the algorithm is useful in any situation where classification is performed, certain features 

of the algorithm make it especially useful in resource-limited systems such as IoT applications, 

specifically, the algorithm's ability to generalize well from small training sets, as well as its 

insensitivity to kernel functions. In short, it is possible to improve on the accuracy of Naïve Bayes 

and SVM classifiers when used with small training sets, but the training and classification steps of 

our AIS algorithm are slower than these algorithms. Also, the algorithm could be easily modified 

to work in parallel processors such as GPUs, greatly increasing its performance.   
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The optimized positive-selection AIS algorithm has shown that it is indeed possible to 

optimize the performance of an AIS algorithm. Also, the algorithm is functionally identical to the 

previous unoptimized version. Moreover, a bound was drawn on the generalization error of the 

algorithm, basing it on previous work in the field of ensemble classifiers. No other research has 

been found pertaining to the application of bounds to artificial immune system classification 

algorithms. In this work, it has been shown that the most common distance measure used, the 

Euclidian distance measure, does not give the best performance for this problem. 

We have found that the algorithm performed as well as other algorithms, and was 

insensitive to input parameters. It is also very simple to implement, and generalizes well from 

small training data sets. The asymptotic complexity of the optimized algorithm and a bound on the 

generalization error of the algorithm are given. In this paper it has been shown how the changes 

and optimizations applied to the original algorithm do not functionally change the original 

algorithm, while making its execution much faster.  

In the analysis chapter of this work, it has been shown how the quality of the margin of 

each individual classifier affects the final performance of an ensemble classifier. Our classifier is 

very naïve in its approach to selecting the placement of it base classifiers in the feature space, using 

a very simple strategy. This is done this way to make the training faster, and good classification 

performance has been achieved in spite of this simplicity. Future research can be done on different 

ways to optimize the margin of each base classifier during the training portion of the algorithm by 

optimizing the placement of its center as well as it radius. Furthermore, the scheme used to set the 

radius of each antibody is also very simple, since it is an approximation of the class boundary and 

does not take into account the generalization ability of the algorithm. It might be interesting to try 
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other ways of finding an optimal antibody radius which allow an antibody to misclassify examples, 

but increase the generalization ability of the classifier. 

Since beginning work on this AIS-inspired algorithm is has been found to be particularly 

insensitive to the choice in parameters. Unlike other classification algorithms, this algorithm does 

not seem need to have its parameters set up perfectly to give good performance. An open question 

for us is: how insensitive is the algorithm to the values of the parameters given to it? Another 

interesting research direction would be to apply a similar bound to the negative selection algorithm, 

using hyper-spheres as base classifiers. Furthermore, a bound could be drawn on this and other 

artificial immune system algorithms that use base classifiers that are not hyper-spheres. 

The optimized negative selection algorithm could be improved in several ways. First, the 

complexity of the algorithm remains in the same class, although the constants are decreased 

significantly. Second, the optimization is only applicable to detectors in which each dimension can 

be evaluated individually, and which allow the set of data points or detectors to be filtered. That 

is, the optimization works on detectors types that allow a data point or detector to be taken out of 

the set if it does not match in one individual dimension, this is not always possible. Third, the 

density of the points in the data set can have a significant effect on the performance of the 

optimized training algorithm. In future research, this optimization scheme could be applied to other 

data sets to highlight the effect that the density of the data set has on the performance of the 

optimized algorithm. Lastly, although the optimization has been demonstrated experimentally to 

not affect the accuracy of the algorithm, this has not been proven formally. Future research could 

be completed to provide a formal proof of the optimized Negative Selection algorithm’s 

equivalency with the unoptimized Negative Selection algorithm. Future work can also be done in 
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the application of the optimization to more complex data sets and exploring the performance of 

the optimized algorithm. 
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APPENDIX A  
 

PYTHON CODE FOR MULTI-CLASS AIS ALGORITHM 
 
import sys as sys 

import random as random 

import math as math 

from collections import defaultdict 

from operator import itemgetter 

import csv as csv 

from random import choice 

from os import listdir 

from os.path import isfile, join 

from random import shuffle 

import copy as copy 

import time as time 

import datetime as datetime 

 

#this function is for importing data 

def getdata(file_name): 

    with open(file_name, 'r') as f: 

        rowdata = [] 

        reader = csv.reader(f) 

        for row in reader: 

            rowdata.append(row) 

    return rowdata 

 

def proportion_per_class(data): 

    prop = {} 

    for d in data: 

        if d[0] not in prop.keys(): 

            prop[d[0]] = 1 

        else: 

            prop[d[0]] = prop[d[0]] + 1 

    for k in prop: 

        prop[k] = float(prop[k]) / float(len(data)) 

    return prop 

 

def get_class_labels(data): 

    classes = [] 

    for i in data: 

        if i[0] not in classes: 

            classes.append(i[0]) 

    return classes 

 

def normalize(data): 

    #cycling through each feature, but not the class label 

    for i in range(1, len(data[0])): 

        lowest = 100000000000000000 

        highest = -10000000000000000 

        for j in data: 

            if float(j[i]) < lowest: 

                lowest = float(j[i]) 
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            if float(j[i]) > highest: 

                highest = float(j[i]) 

        #now that we have the highest and lowest values, we can calculate the 

normalized value 

        for j in data: 

            if highest == lowest: 

                j[i] = 0.5 

            else: 

                j[i] = (float(j[i]) - lowest)/(highest-lowest) 

    return data 

 

#this function is to create a stratified folded data set from a normal datase 

def stratify(data, folds): 

    #building a dictionary to hold all data by class which is in data[0][0] 

    classes = {} 

    #splitting data into classes 

    for d in data: 

        if d[0] not in classes: 

            classes[d[0]] = [] 

            classes[d[0]].append(d) 

        else: 

            classes[d[0]].append(d) 

 

    # n-fold stratified samples 

    data = [] 

    for r in range(folds): 

        data.append([]) 

    #spreading the classes evenly into all data sets 

    for key,items in classes.items(): 

        for i in range(len(items)): 

            data[i%folds].append(items[i]) 

    return data 

 

 

def distance(x1, x2, parameters): 

    if len(x1) != len(x2): 

     return False 

    else: 

        distance = 0 

        for i in range(1,len(x1)): 

            distance = distance + ((float(x1[i]) - float(x2[i]))**2) 

        distance = math.sqrt(distance) 

        return distance 

 

 

#these functions are used for doing prediction with the population of 

antibodies 

def distance(x1, x2, parameters): 

    if len(x1) != len(x2): 

     return False 

    else: 

        distance = 0 

        for i in range(1,len(x1)): 

            distance = distance + ((float(x1[i]) - float(x2[i]))**2) 
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        distance = math.sqrt(distance) 

        return distance 

 

#testing the prediction performance 

def test_fmeasure(antibodies, test_data,class_label, parameters): 

    TP, TN, FP, FN = 0, 0, 0, 0 

    for x in test_data: 

        if x[0] == class_label: 

            yhat = predict(antibodies, x, parameters) 

            if x[0] == yhat: 

                TP += 1 

            else: 

                FN += 1 

        else: 

            yhat = predict(antibodies, x, parameters) 

            if yhat == class_label: 

                FP += 1 

            else: 

                TN += 1 

 

    #print TP, TN, FP, FN 

    if float(TP+FP) != 0: 

        precision = float(TP) / float(TP+FP) 

    else: 

        precision = 0.0 

    if float(TP+FN) != 0: 

        recall = float(TP) / float(TP+FN) 

    else: 

        recall = 0.0 

    if (precision + recall) != 0: 

        fmeasure = 2*((precision*recall)/(precision + recall)) 

    else: 

        fmeasure = 0.0 

         

    #return "TP: " + str(TP)+ " TN: "+ str(TN)+ " FP: "+ str(FP)+ " FN: "+ 

str(FN) 

    return [precision, recall, fmeasure] 

     

#testing the prediction performance 

def test_accuracy(antibodies, test_data, parameters): 

    error_count = 0 

    correct_count = 0 

    for x in test_data: 

        yhat = predict(antibodies, x, parameters) 

        if x[0] != yhat: 

            error_count = error_count + 1 

        else: 

            correct_count = correct_count + 1 

        #print "predicted: ", yhat, " actual: ", x[0] 

    return float(correct_count) / float(len(test_data)) 

 

#vote for the best classification 

def predict(antibodies, x, parameters): 

    distances = [] 
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    for a in antibodies: 

        d = distance(x, a[0], parameters) 

        if d <= a[1]: 

            return a[0][0] 

        else: 

            distances.append([a[0][0], d]) 

    distances.sort(key=itemgetter(1)) 

    return distances[0][0] 

 

def error_count(antibody, training_set, parameters): 

    error_count = 0 

    class_data = [i for i in training_set if i[0] != antibody[0][0]] 

    for t in class_data: 

        if distance(t, antibody[0], parameters) <= antibody[1]: 

            error_count = error_count + 1     

    return error_count 

 

def generate_population(training_set, classes, size, parameters): 

    antibodies = [] 

    #select random antibodies from the self class, and add with a radius of 0 

    for c in classes: 

        class_data = [i for i in training_set if i[0] == c] 

        num_of_antibodies = int(float(size) / float(len(classes))) 

        for i in range(num_of_antibodies): 

            proposed_antibody = [choice(class_data), 0.0] 

            antibodies.append(proposed_antibody) 

     

    #expand the antibodies by a step size until it misclassify a non-self 

point 

    for a in antibodies: 

        changed = True 

        while changed: 

            if error_count(a, training_set, parameters) > 0: 

                a[1] = a[1] - parameters["step_size"] 

                changed = False 

            else: 

                a[1] = a[1] + parameters["step_size"] 

                changed = True 

                 

    return antibodies 

 

#structure of antibody: [ [class, x1, x2, x3,... ], radius] 

files = [ f for f in listdir("C:/Users/Brian/Documents/IPython 

Notebooks/network_data/") ] 

original_data = [] 

for f in files: 

    original_data = original_data + getdata( 

"C:/Users/Brian/Documents/IPython Notebooks/network_data/" + f ) 

     

classes = get_class_labels(original_data) 

 

set_size = 1000 

 

parameters = {} 
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parameters["step_size"] = 0.01 

parameters["c"] = 0.08 

parameters["d"] = 2 

 

print ("Fig 2. Classification accuracy with data set size held at 1000 

samples") 

print("set_size \t popsize \t accuracy") 

for pop_size in range(100, 1100, 50): 

    average_accuracy = 0.0 

     

    #building a balanced data set 

    data = [] 

    for c in classes: 

        class_data = [d for d in original_data if d[0] == c] 

        shuffle(class_data) 

        data = data + class_data[:int( float(1000) / float(len(classes)))] 

 

    data = normalize(data) 

    data = stratify(data, 10) 

     

    for st in range(len(data)): 

        test_set = data[st%len(data)] + data[(st+1)%len(data)] + 

data[(st+2)%len(data)] 

        training_set = [] 

        for tsp in range(len(data)-1): 

            training_set = training_set + data[(st+3+tsp)%len(data)] 

          

        antibodies = generate_population( training_set, classes, pop_size, 

parameters) 

        accuracy = test_accuracy(antibodies, test_set, parameters) 

        average_accuracy = average_accuracy + accuracy 

         

    print( "1000 \t ", pop_size, " \t ", average_accuracy/10.0 ) 

print("") 

print("") 

 

print("Fig 3.  Classification accuracy and data set size 200-1000") 

# average accuracy over sample size, three training methods, x=# of flows, 

y=average accuracy, three training methods, three lines 

print("set_size \t popsize \t accuracy") 

for sample_size in range(100, 1100, 50): 

    average_accuracy = 0.0 

     

    #building a balanced data set 

    data = [] 

    for c in classes: 

        class_data = [d for d in original_data if d[0] == c] 

        shuffle(class_data) 

        data = data + class_data[:int( float(sample_size) / 

float(len(classes)))] 

 

    data = normalize(data) 

    data = stratify(data, 10) 
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    for st in range(len(data)): 

        test_set = data[st%len(data)] + data[(st+1)%len(data)] + 

data[(st+2)%len(data)] 

        training_set = [] 

        for tsp in range(len(data)-1): 

            training_set = training_set + data[(st+3+tsp)%len(data)] 

          

        antibodies = generate_population( training_set, classes, 1000, 

parameters) 

        accuracy = test_accuracy(antibodies, test_set, parameters) 

        average_accuracy = average_accuracy + accuracy 

         

    print( sample_size, " \t 1000 \t ", average_accuracy/10.0 ) 

print("") 

print("") 

 

print ("Fig 4. Classification time with data set size at 1000") 

print("set_size \t popsize \t classification time") 

for pop_size in range(100, 1100, 50): 

     

    average_time = 0.0 

     

    #building a balanced data set 

    data = [] 

    for c in classes: 

        class_data = [d for d in original_data if d[0] == c] 

        shuffle(class_data) 

        data = data + class_data[:int( float(1000) / float(len(classes)))] 

 

    data = normalize(data) 

    data = stratify(data, 10) 

     

    for st in range(10): 

        test_set = data[st%len(data)] + data[(st+1)%len(data)] + 

data[(st+2)%len(data)] 

        training_set = [] 

        for tsp in range(len(data)-1): 

            training_set = training_set + data[(st+3+tsp)%len(data)] 

     

        antibodies = generate_population( training_set, classes, pop_size, 

parameters) 

        t1 = datetime.datetime.now() 

        accuracy = test_accuracy(antibodies, test_set, parameters) 

        t2 = datetime.datetime.now() 

        average_time = float(average_time) + 

float(datetime.timedelta.total_seconds(t2-t1)) 

 

    print( " 1000 \t ", pop_size, average_time/10.0 ) 

print("") 

print("") 

 

print("Fig 5. Training time and training dataset size 200-1000") 

print("set_size \t popsize \t training time") 

for set_size in range(100, 1100, 50): 
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    average_time = 0.0 

     

    #building a balanced data set 

    data = [] 

    for c in classes: 

        class_data = [d for d in original_data if d[0] == c] 

        shuffle(class_data) 

        data = data + class_data[:int( float(set_size) / 

float(len(classes)))] 

 

    data = normalize(data) 

    data = stratify(data, 10) 

     

    for st in range(10): 

        test_set = data[st%len(data)] + data[(st+1)%len(data)] + 

data[(st+2)%len(data)] 

        training_set = [] 

        for tsp in range(len(data)-1): 

            training_set = training_set + data[(st+3+tsp)%len(data)] 

     

        t1 = datetime.datetime.now() 

        antibodies = generate_population( training_set, classes, 1000, 

parameters) 

        t2 = datetime.datetime.now() 

     

        average_time = float(average_time) + 

float(datetime.timedelta.total_seconds(t2-t1)) 

 

    print( set_size, " \t 1000 \t ", average_time/10.0 ) 

print("") 
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APPENDIX B  
 

PYTHON CODE FOR OPTIMIZED AIS INTERNET FLOW CLASSIFICATION 

ALGORITHM 
 
import sys as sys 

import random as random 

import math as math 

from collections import defaultdict 

from operator import itemgetter 

import csv as csv 

from random import choice 

from os import listdir 

from os.path import isfile, join 

from random import shuffle 

import copy as copy 

import time as time 

import datetime as datetime 

from sklearn import svm 

 

def separate(data): 

    labels = [] 

    dataa = [] 

    for i in data: 

        labels.append(i[0]) 

        dataa.append(i[1:]) 

    return [labels, dataa] 

 

def square_distance(pointA, pointB): 

    # squared euclidean distance 

    distance = 0 

    dimensions = len(pointA) # assumes both points have the same dimensions 

    for dimension in range(dimensions): 

        distance += (pointA[dimension] - pointB[dimension])**2 

    distance = math.sqrt(distance) 

    return distance 

 

class KDTreeNode(): 

    def __init__(self, point, left, right): 

        self.point = point 

        self.left = left 

        self.right = right 

     

    def is_leaf(self): 

        return (self.left == None and self.right == None) 

   

class KDTreeneighbors(): 

    def __init__(self, query_point, t): 

        self.query_point = query_point 

        self.t = t # neighbors wanted 

        self.largest_distance = 0 # squared 

        self.current_best = [] 
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    def calculate_largest(self): 

        if self.t >= len(self.current_best): 

            self.largest_distance = self.current_best[-1][1] 

        else: 

            self.largest_distance = self.current_best[self.t-1][1] 

 

    def add(self, point): 

        sd = square_distance(point[1], self.query_point[1]) 

        # run through current_best, try to find appropriate place 

        for i, e in enumerate(self.current_best): 

            if i == self.t: 

                return # enough neighbors, this one is farther, let's forget 

it 

            if e[1] > sd: 

                self.current_best.insert(i, [point, sd]) 

                self.calculate_largest() 

                return 

        # append it to the end otherwise 

        self.current_best.append([point, sd]) 

        self.calculate_largest() 

     

    def get_best(self): 

        return [element[0] for element in self.current_best[:self.t]] 

   

class KDTree(): 

    def __init__(self, data): 

        def build_kdtree(point_list, depth): 

            #code based on wikipedia article: 

http://en.wikipedia.org/wiki/Kd-tree 

            if not point_list: 

                return None 

 

            # select axis based on depth so that axis cycles through all 

valid values 

            axis = depth % len(point_list[0][1]) # assumes all points have 

the same dimension 

 

            # sort point list and choose median as pivot point, 

            # TODO: better selection method, linear-time selection, 

distribution 

            point_list.sort(key=lambda x: x[1][axis]) 

            median = int(len(point_list)/2) # choose median 

 

            # create node and recursively construct subtrees 

            node = KDTreeNode(point=point_list[median], 

                              left=build_kdtree(point_list[0:median], 

depth+1), 

                              right=build_kdtree(point_list[median+1:], 

depth+1)) 

            return node 

         

        self.root_node = build_kdtree(data, depth=0) 

     

    @staticmethod 



158 

 

    def construct_from_data(data): 

        tree = KDTree(data) 

        return tree 

 

    def query(self, query_point, t=1): 

        statistics = {'nodes_visited': 0, 'far_search': 0, 'leafs_reached': 

0} 

         

        def nn_search(node, query_point, t, depth, best_neighbors): 

            if node == None: 

                return 

             

            #statistics['nodes_visited'] += 1 

             

            # if we have reached a leaf, let's add to current best neighbors, 

            # (if it's better than the worst one or if there is not enough 

neighbors) 

            if node.is_leaf(): 

                #statistics['leafs_reached'] += 1 

                best_neighbors.add(node.point) 

                return 

             

            # this node is no leaf 

             

            # select dimension for comparison (based on current depth) 

            axis = depth % len(query_point[1]) 

             

            # figure out which subtree to search 

            near_subtree = None # near subtree 

            far_subtree = None # far subtree (perhaps we'll have to traverse 

it as well) 

             

            # compare query_point and point of current node in selected 

dimension and figure out which subtree is farther than the other 

            if query_point[1][axis] < node.point[1][axis]: 

                near_subtree = node.left 

                far_subtree = node.right 

            else: 

                near_subtree = node.right 

                far_subtree = node.left 

 

            # recursively search through the tree until a leaf is found 

            nn_search(near_subtree, query_point, t, depth+1, best_neighbors) 

 

            # while unwinding the recursion, check if the current node 

            # is closer to query point than the current best, 

            # also, until t points have been found, search radius is infinity 

            best_neighbors.add(node.point) 

             

            # check whether there could be any points on the other side of 

the 

            # splitting plane that are closer to the query point than the 

current best 
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            if (node.point[1][axis] - query_point[1][axis])**2 < 

best_neighbors.largest_distance: 

                #statistics['far_search'] += 1 

                nn_search(far_subtree, query_point, t, depth+1, 

best_neighbors) 

             

            return 

         

        # if there's no tree, there's no neighbors 

        if self.root_node != None: 

            neighbors = KDTreeneighbors(query_point, t) 

            nn_search(self.root_node, query_point, t, depth=0, 

best_neighbors=neighbors) 

            result = neighbors.get_best() 

        else: 

            result = [] 

         

        #print (statistics) 

        return result 

     

     

     

 

#this function is for importing data 

def getdata(file_name): 

    with open(file_name, newline='') as f: 

        rowdata = [] 

        reader = csv.reader(f) 

        for row in reader: 

            for i in range(1, len(row)):  

                row[i] = float(row[i]) 

            rowdata.append([row[0], row[1:]]) 

    return rowdata 

 

def proportion_per_class(data): 

    prop = {} 

    for d in data: 

        if d[0] not in prop.keys(): 

            prop[d[0]] = 1 

        else: 

            prop[d[0]] = prop[d[0]] + 1 

    for k in prop: 

        prop[k] = float(prop[k]) / float(len(data)) 

    return prop 

 

 

def get_class_labels(data): 

    classes = [] 

    for i in data: 

        if i[0] not in classes: 

            classes.append(i[0]) 

    return classes 

 

def normalize(data): 
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    #cycling through each feature, but not the class label 

    for i in range(len(data[0][1])): 

        lowest = 100000000000000000 

        highest = -10000000000000000 

        for j in data: 

            if float(j[1][i]) < lowest: 

                lowest = j[1][i] 

            if float(j[1][i]) > highest: 

                highest = j[1][i] 

        #now that we have the highest and lowest values, we can calculate the 

normalized value 

        for j in data: 

                if highest == lowest: 

                    j[1][i] = 0.5 

                else: 

                    j[1][i] = (j[1][i] - lowest)/(highest-lowest) 

    return data 

 

#this function is to create a stratified folded data set from a normal datase 

def stratify(data, folds): 

    #building a dictionary to hold all data by class which is in data[0][0] 

    classes = {} 

    #splitting data into classes 

    for d in data: 

        if d[0] not in classes: 

            classes[d[0]] = [] 

            classes[d[0]].append(d) 

        else: 

            classes[d[0]].append(d) 

 

    # n-fold stratified samples 

    data = [] 

    for r in range(folds): 

        data.append([]) 

    #spreading the classes evenly into all data sets 

    for key,items in classes.items(): 

        for i in range(len(items)): 

            data[i%folds].append(items[i]) 

    return data 

 

def distance(x1, x2, parameters): 

    if len(x1) != len(x2): 

     return False 

    else: 

        distance = 0 

        for i in range(len(x1)): 

            distance = distance + ((float(x1[i]) - float(x2[i]))**2) 

        distance = math.sqrt(distance) 

        return distance 

 

#testing the prediction performance 

def test_fmeasure(antibodies, test_data, class_label, parameters): 

    TP, TN, FP, FN = 0, 0, 0, 0 

    for x in test_data: 
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        if x[0] == class_label: 

            yhat = predict(antibodies, x, parameters) 

            if x[0] == yhat: 

                TP += 1 

            else: 

                FN += 1 

        else: 

            yhat = predict(antibodies, x, parameters) 

            if yhat == class_label: 

                FP += 1 

            else: 

                TN += 1 

 

    #print (TP, TN, FP, FN) 

    if float(TP+FP) != 0: 

        precision = float(TP) / float(TP+FP) 

    else: 

        precision = 0.0 

    if float(TP+FN) != 0: 

        recall = float(TP) / float(TP+FN) 

    else: 

        recall = 0.0 

    if (precision + recall) != 0: 

        fmeasure = 2*((precision*recall)/(precision + recall)) 

    else: 

        fmeasure = 0.0 

         

    return "TP: " + str(TP)+ " TN: "+ str(TN)+ " FP: "+ str(FP)+ " FN: "+ 

str(FN) 

    #return [precision, recall, fmeasure] 

     

#testing the prediction performance 

def test_accuracy(antibodies, test_data, parameters): 

    error_count = 0 

    correct_count = 0 

    for x in test_data: 

        yhat = predict(antibodies, x, parameters) 

        if x[0] != yhat: 

            error_count = error_count + 1 

            #print ("predicted: ", yhat, " actual: ", x[0], "\t\t#") 

        else: 

            correct_count = correct_count + 1 

            #print ("predicted: ", yhat, " actual: ", x[0]) 

    return float(correct_count) / float(len(test_data)) 

 

 

#vote for the best classification 

def predict(antibodies, x, parameters): 

    distances = [] 

    for a in antibodies: 

        d = distance(x[1], a[1], parameters) 

        if d <= a[2]: 

            return a[0] 

        else: 
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            distances.append([a[0], d]) 

    distances.sort(key=itemgetter(1)) 

    return distances[0][0] 

 

 

def generate_population(training_set, classes, size, parameters): 

    antibodies = [] 

    num_of_antibodies = int(float(size) / float(len(classes))) 

     

    for c in classes: 

        class_data = [i for i in training_set if i[0] == c] 

        non_class_data = [i for i in training_set if i[0] != c] 

 

        tree = KDTree.construct_from_data(non_class_data) 

 

        for i in range(num_of_antibodies): 

            proposed_center = choice(class_data) 

            nearest = tree.query(proposed_center, t=1)[0] 

            dist = distance(nearest[1], proposed_center[1], parameters) 

             

            if dist <= parameters["step_size"]: 

                radius = 0.0 

            else: 

                radius = dist - (dist%parameters["step_size"]) 

             

            proposed_antibody = [proposed_center[0], proposed_center[1], 

radius] 

            antibodies.append(proposed_antibody) 

    return antibodies 

 

def error_count(antibody, training_set, parameters): 

    error_count = 0 

    class_data = [i for i in training_set if i[0] != antibody[0]] 

    for t in class_data: 

        if distance(t[1], antibody[1], parameters) <= antibody[2]: 

            error_count = error_count + 1     

    return error_count 

 

def original_generate_population(training_set, classes, size, parameters): 

    antibodies = [] 

    #select random antibodies from the self class, and add with a radius of 0 

    for c in classes: 

        class_data = [i for i in training_set if i[0] == c] 

         

        num_of_antibodies = int(float(size) / float(len(classes))) 

        for i in range(num_of_antibodies): 

            proposed_center = choice(class_data) 

            proposed_antibody = [proposed_center[0], proposed_center[1], 0.0] 

            antibodies.append(proposed_antibody) 

     

    #expand the antibodies by a step size until it misclassify a non-self 

point 

    for a in antibodies: 

        changed = True 
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        while changed: 

            if error_count(a, training_set, parameters) > 0: 

                a[2] = a[2] - parameters["step_size"] 

                changed = False 

            else: 

                a[2] = a[2] + parameters["step_size"] 

                changed = True 

                 

    return antibodies 

 

 

#new structure of antibody: [ class, [x1, x2, x3,... ], radius] 

files = [ f for f in listdir("C:/Users/Brian/Documents/IPython 

Notebooks/network_data/") ] 

original_data = [] 

for f in files: 

    original_data = original_data + getdata( 

"C:/Users/Brian/Documents/IPython Notebooks/network_data/" + f ) 

 

classes = get_class_labels(original_data) 

proportions = proportion_per_class(original_data) 

 

parameters = {} 

parameters["step_size"] = 0.01 

 

#varying the training set size 

# learning time, seconds of time over training set size,  

print ("set_size \t time_with_kd \t time_without_kd") 

for set_size in range(200, 1050, 50): 

     

    average_time = 0.0 

     

    #building a balanced data set 

    data = [] 

    for c in classes: 

        class_data = [d for d in original_data if d[0] == c] 

        shuffle(class_data) 

        data = data + class_data[:int( float(set_size) / 

float(len(classes)))] 

 

    data = normalize(data) 

    data = stratify(data, 10) 

     

    time_with_kd = 0.0 

    time_without_kd = 0.0 

    SVM_time = 0.0 

     

    for st in range(10): 

        test_set = data[st%len(data)] 

        validation_set = data[(st+1)%len(data)] 

        training_set = [] 

        for tsp in range(len(data)-2): 

            training_set = training_set + data[(st+2+tsp)%len(data)] 
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        start = time.time() 

        antibodies = generate_population( training_set, classes, 1000, 

parameters) 

        end = time.time() 

     

        time_with_kd = time_with_kd + (end - start) 

 

         

        start = time.time() 

        antibodies = original_generate_population(training_set, classes, 

1000, parameters) 

        end = time.time() 

     

        time_without_kd = time_without_kd + (end-start) 

 

        #preparing data for SVM 

        datta = separate(training_set) 

        training_set_labels = datta[0] 

        training_set_data = datta[1] 

 

        start = time.time() 

        lin_clf = svm.LinearSVC() 

        lin_clf.fit(training_set_data, training_set_labels)  

        end = time.time() 

     

        SVM_time = SVM_time + ( end - start ) 

         

    print (set_size, " \t ", time_with_kd/10.0, " \t ", time_without_kd/10.0, 

" \t ", SVM_time/10.0) 

print ("") 

 

 

#varying the antibody population time 

print ("pop_size \t time_with_kd \t time_without_kd") 

for pop_size in range(200, 1050, 50): 

     

    #building a balanced data set 

    data = [] 

    for c in classes: 

        class_data = [d for d in original_data if d[0] == c] 

        shuffle(class_data) 

        data = data + class_data[:int( float(1000) / float(len(classes)))] 

 

    data = normalize(data) 

    data = stratify(data, 10) 

     

    time_with_kd = 0.0 

    time_without_kd = 0.0 

    SVM_time = 0.0 

     

    for st in range(10): 

        test_set = data[st%len(data)] 

        validation_set = data[(st+1)%len(data)] 

        training_set = [] 
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        for tsp in range(len(data)-2): 

            training_set = training_set + data[(st+2+tsp)%len(data)] 

     

        start = time.clock() 

        antibodies = generate_population( training_set, classes, pop_size, 

parameters) 

        end = time.clock() 

     

        time_with_kd = time_with_kd + (float(end)-float(start)) 

         

        start = time.clock() 

        antibodies = original_generate_population(training_set, classes, 

pop_size, parameters) 

        end = time.clock() 

     

        time_without_kd = time_without_kd + (float(end)-float(start)) 

 

        #preparing data for SVM 

        datta = separate(training_set) 

        training_set_labels = datta[0] 

        training_set_data = datta[1] 

 

        start = time.time() 

        lin_clf = svm.LinearSVC() 

        lin_clf.fit(training_set_data, training_set_labels)  

        end = time.time() 

     

        SVM_time = SVM_time + (end-start) 

         

    print (set_size, " \t ", time_with_kd/10.0, " \t ", time_without_kd/10.0, 

" \t ", SVM_time/10.0) 

print ("")  
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APPENDIX C  
 

PYTHON CODE FOR OPTIMIZED AIS NEGATIVE SELECTION ALGORITHM  
 

import csv as csv 

import sys as sys 

import random as random 

from random import shuffle 

import math as math 

from collections import defaultdict 

from operator import itemgetter 

import copy as copy 

import time as time 

import datetime as datetime 

from math import sqrt 

 

#this function is for importing data 

def getdata(file_name): 

    with open(file_name, newline='') as f: 

        rowdata = [] 

        reader = csv.reader(f) 

        for row in reader: 

            for i in range(1, len(row)):  

                row[i] = float(row[i]) 

            rowdata.append(row) 

    return rowdata 

 

def distance(x1, x2): 

    distance = sqrt(sum( (x1 - x2)**2 for x1, x2 in zip(x1, x2))) 

    return distance 

 

def normalize(data): 

    for j in range(len(data)): 

        for i in range(1, len(data[j])): 

            data[j][i] = (data[j][i] - 1.0)/(10.0-1.0) 

    return data 

 

#this function is to create a stratified folded data set from a normal datase 

def stratify(data, folds): 

    #building a dictionary to hold all data by class which is in data[0][0] 

    classes = {} 

    #splitting data into classes 

    for d in data: 

        if d[0] not in classes: 

            classes[d[0]] = [] 

            classes[d[0]].append(d) 

        else: 

            classes[d[0]].append(d) 

 

    # n-fold stratified samples 

    data = [] 

    for r in range(folds): 

        data.append([]) 
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    #spreading the classes evenly into all data sets 

    for key,items in classes.items(): 

        for i in range(len(items)): 

            data[i%folds].append(items[i]) 

    return data 

 

#testing the prediction performance 

def get_accuracy(antibodies, test_data, self_class, non_self_class): 

    correct = 0.0 

    incorrect = 0.0 

    for x in test_data: 

        yhat = predict(antibodies, x, self_class, non_self_class ) 

        if x[0] == yhat: 

            correct += 1 

            #print("correct") 

        else: 

            incorrect += 1 

            #print("incorrect") 

    accuracy = correct / float(len(test_data)) 

    return accuracy 

 

def generate_random_antibody(data, parameters): 

    #format: [[center], radius] 

    radius = parameters["radius"] 

    center = [] 

    for i in range(1,len(data[0])): 

        center.append(random.uniform(0,1)) 

    return [center, radius] 

 

def train_population(training_set, population_size, parameters, self_class, 

non_self_class): 

    antibodies = [] 

    self_class = [x for x in training_set if x[0] == self_class] 

    while len(antibodies) < population_size: 

        proposed_antibody = generate_random_antibody(data, parameters) 

        flagged = False 

        for x in self_class: 

            if distance(proposed_antibody[0], x[1:]) < proposed_antibody[1]: 

                flagged = True 

        if flagged == False: 

            antibodies.append(proposed_antibody) 

    return antibodies 

 

def predict(antibodies, x, self_class, non_self_class): 

    for a in antibodies: 

        if distance(a[0], x[1:]) < a[1]: 

            return non_self_class 

    return self_class 

 

#testing the prediction performance 

def optimized_get_accuracy(antibodies, test_data, self_class, 

non_self_class): 

    correct = 0.0 

    incorrect = 0.0 
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    for x in test_data: 

        yhat = optimized_predict(antibodies, x, self_class, non_self_class ) 

        if x[0] == yhat: 

            correct += 1 

            #print("correct") 

        else: 

            incorrect += 1 

            #print("incorrect") 

    accuracy = correct / float(len(test_data)) 

    return accuracy 

 

def optimized_train_population(training_set, population_size, parameters, 

self_class, non_self_class): 

    antibodies = [] 

    original_self_class = [x for x in training_set if x[0] == self_class] 

    while len(antibodies) < population_size: 

        self_class = original_self_class   #this allows the selection above 

to happen only once 

        proposed_antibody = generate_random_antibody(training_set, 

parameters) 

 

        #select the self class points in each dimension that could be 

contained in by the proposed antibody 

        for i in range(1,len(self_class[0])): 

            self_class = [s for s in self_class if s[i] > 

(proposed_antibody[0][i-1]-proposed_antibody[1]) and s[i] < 

(proposed_antibody[0][i-1]+proposed_antibody[1])] 

 

        #if the self_class list is empty then add the antibody, since there 

are no points in the self class contained by the hyper-cube containing the 

hyper-sphere 

        if len(self_class) == 0: 

            antibodies.append(proposed_antibody)             

        #check whether the self points selected are actually contained by the 

hypersphere and not only the hyper cube 

        else: 

            flagged = False 

            for s in self_class: 

                if distance(proposed_antibody[0], s[1:]) < 

proposed_antibody[1]: 

                    flagged = True 

            if flagged == False:    #if there are no points that are within 

the hyper-sphere then add the antibody to the population 

                antibodies.append(proposed_antibody) 

    return antibodies 

 

def optimized_predict(antibodies, x, self_class, non_self_class): 

    #select the antibodies that could contain the point 

    #for every dimension in the antibody center: 

 

    for i in range(len(antibodies[0][0])): 

        antibodies = [a for a in antibodies if x[i+1] > (a[0][i]-a[1]) and 

x[i+1] < (a[0][i]+a[1])] 

    #further filter the set of antibodies 



169 

 

    for a in antibodies: 

        if distance(a[0], x[1:]) < a[1]: 

            return non_self_class 

    return self_class 

 

    #if the set of antibodies is filtered down to zero, then we know that the 

points is outside of the non-self class, there for it is self 

    if len(antibodies) == 0: 

        return self_class 

 

#note: this script wiill be coded to only use the Breast Cancer Wisconsin 

Data Set 

original_data = getdata( "C:/Users/Brian/Documents/IPython 

Notebooks/datasets/cancer.csv") 

 

parameters = {} 

parameters["radius"] = 0.93 

 

print ("population size \t accuracy") 

for population_size in range(100, 1050, 50): 

    #building a balanced data set 

    data = [] 

    for c in ["benign", "malignant"]: 

        class_data = [d for d in original_data if d[0] == c] 

        data = data + class_data[:int( float(500) / 2.0 ) ] 

 

    data = normalize(data) 

    data = stratify(data, 10) 

    

    accuracy = 0.0 

     

    for st in range(1): 

        test_set = data[st%len(data)] 

        validation_set =  data[(st+1)%len(data)] 

        training_set = [] 

        for tsp in range(len(data)-2): 

            training_set = training_set + data[(st+2+tsp)%len(data)] 

 

        best_r = 0 

        max_accuracy = 0.0 

        #find the optimal value for the radius of the antibodies 

        for r in range(1,100, 10): 

            print(r/100.0) 

            parameters = {} 

            parameters["radius"] = float(r)/100.0 

            antibodies = train_population(training_set, 1000, parameters, 

"benign", "malignant") 

            accuracy = get_accuracy(antibodies, validation_set, "benign", 

"malignant") 

            if accuracy > max_accuracy: 

                max_accuracy = accuracy 

                best_r = float(r)/100.0 

 

        parameters = {} 
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        parameters["radius"] = best_r 

 

        antibodies = train_population(training_set, population_size, 

parameters, "benign", "malignant") 

 

        accuracy = accuracy + get_accuracy(antibodies, test_set, "benign", 

"malignant") 

   

    print (population_size, " \t ", accuracy/1.0) 

print ("") 
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